Problem 1

In class we proved that the language

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

is not decidable by reduction from the acceptance problem \(A_{TM} \).

In this problem you are asked to give a direct proof of the same result. Prove (using a diagonalization argument) that the language \(\text{HALT}_{TM} \) is undecidable.

Solution: Assume for contradiction that \(\text{HALT}_{TM} \) is decidable and let \(H \) be a Turing machine that decides \(\text{HALT}_{TM} \). Define a new Turing machine \(D \) defined as follows:

1. \(D \) takes as input the description \(\langle M \rangle \) of a Turing machine \(M \).

2. On input \(\langle M \rangle \), TM \(D \) run \(H \) on input \(\langle M, \langle M \rangle \rangle \) to decide whether or not \(M \) terminates when run on its own description \(\langle M \rangle \).

3. If \(H \) rejects, then \(D \) accepts.

4. If \(H \) accepts, then \(D \) enters an infinite loop.

We now consider what happens if we run \(D \) on its own description \(\langle D \rangle \). The question is: does \(D \) terminate when run on input \(\langle D \rangle \)? We examine both possibilities and show that in both cases we get a contradiction.

1. First assume that \(D \) terminates on input \(\langle D \rangle \). Then \(\langle D, \langle D \rangle \rangle \in \text{HALT}_{TM} \) and at step (2) \(H \) accepts \(\langle D, \langle D \rangle \rangle \). Therefore \(D \) enter an infinite loop at step (4) and does not terminate: a contradiction!

2. Now assume that \(D \) does not terminate on input \(\langle D \rangle \). Then \(\langle D, \langle D \rangle \rangle \notin \text{HALT}_{TM} \) and at step (2) \(H \) rejects \(\langle D, \langle D \rangle \rangle \). Therefore \(D \) will terminate accepting the input at step (3): a contradiction!
Problem 2

In the second midterm you were asked to prove that the language

\[L = \{ \langle G, E \rangle \mid G \text{ is a CFG and } E \text{ is a regular expression such that } \mathcal{L}(G) \subseteq \mathcal{L}(E) \} \]

is decidable. In this problem you are asked to study what happens if you exchange \(E \) and \(G \) in the definition of \(L \). That is, consider the language

\[L' = \{ \langle G, E \rangle \mid G \text{ is a CFG and } E \text{ is a regular expression such that } \mathcal{L}(E) \subseteq \mathcal{L}(G) \} \].

Is \(L' \) decidable? (Prove or disprove)

Solution: \(L' \) can be easily proved undecidable by reduction from the language \(\text{ALL}_{CFG} \) which was proved undecidable in class. Recall that \(\text{ALL}_{CFG} \) is the set of all strings \(\langle G \rangle \) such that \(G \) is a context free grammar that generates the entire language \(\Sigma^* \).

We now give a simple reduction from \(\text{ALL}_{CFG} \) to \(L' \). Let \(M \) a TM deciding \(L' \). We describe a TM \(R \) that using \(M \) as a subroutine decides \(\text{ALL}_{CFG} \).

On input \(\langle G \rangle \), \(R \) does the following:

1. Build a regular expression \(E \) that generates the language \(\Sigma^* \), where \(\Sigma \) is the alphabet of \(G \).
2. Run \(M \) on input \(\langle G, E \rangle \) to check whether \(\mathcal{L}(E) \subseteq \mathcal{L}(G) \).
3. If \(M \) accepts, then \(R \) also accepts
4. If \(M \) rejects, then \(R \) also rejects

It is easy to see that this is in fact a map reduction from \(\text{ALL}_{CFG} \) to \(L' \) with reduction function

\[f : \langle G \rangle \mapsto \langle G, \Sigma^* \rangle \]

Problem 3

Do problem 5.20(b) from the book. I.e., show that the emptiness problem \(E_{2DFA} \) for two headed finite automata is undecidable. (See the textbook for precise definition of 2DFA and \(E_{2DFA} \).)

Also, answer the following questions: is \(E_{2DFA} \) enumerable? is \(E_{2DFA} \) co-enumerable? (Briefly justify your answer)

Solution: We prove that \(E_{2DFA} \) is undecidable by reduction from \(E_{TM} \) (a similar reduction is also possible from \(E_{LBA} \) or \(A_{TM} \)). I.e., we show how to transform a TM \(M \) into a 2DFA \(A \) such that \(\mathcal{L}(M) \) is empty if and only if \(\mathcal{L}(A) \) is empty. The idea is to define a 2DFA \(A \) that accepts all strings that represent accepting computations for \(M \). If \(M \) does not accept any string then the set of accepting computation for \(M \)
is also empty. On the other hand, if M accept some string, then it has at least one accepting computation and therefore $L(A)$ is not empty.

The 2DFA A can be defined as follows. Let $M = (Q; \Sigma, \Gamma, \delta, q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}})$. The automaton A has input alphabet $\Gamma \cup Q \cup \{\#\}$ where $\#$ is some special symbol not in Γ.

Let $w = c_0\#c_1\#\ldots\#c_n$ be the input to A where each c_i is a string not containing the special symbol $\#$. Automaton A will check that each c_i represent a configuration, c_0 is a start configuration (i.e. a string of the form $q_{\text{start}} \Sigma^*$), each c_i yields c_{i+1} according to the transition function δ of TM M, and c_n is an accepting configuration, i.e. c_n contains the state q_{accept}. Details follow.

Automaton A starts with both heads to the left of the input string w and does the following:

1. Check that w starts with a string of the form $q_{\text{start}} \Sigma^*$ moving the first tape head to the right until a $\#$ is found. If not, reject.

2. At this point the two tape heads are positioned at the beginning of two successive configuration in the computation history w and A must check that the first configuration c_i yields the second one c_{i+1}. This is done as follows:

 (a) Move both tape heads in parallel to the right checking that the symbols read are equal

 (b) As soon as a difference is found, read the next three symbols with both heads to check that they correspond to a valid transition according to δ. More precisely, if the three symbols from the first configuration are $u_1 = aqb$ and $\delta(q, b) = (r, c, L)$ then the three symbols from the second configuration should be $u_2 = rcb$; while if $u_1 = qab$ and $\delta(q, a) = (r, c, R)$ then it should be $u_2 = crb$. Special rules are needed when the TM tape head is either at the beginning or the end of the tape. So, for example if $u_1 = aq\#$ and $\delta(q, \ldots) = (r, b, L)$ the it should be $u_2 = qab$.

 (c) finally checks that the remaining symbols of the two configurations (up to the next $\#$) are the same.

3. After A has checked the c_i yields c_{i+1}, the tape heads are at the beginning of configurations c_{i+1} and c_{i+2} and A can go on to check that c_{i+1} yields c_{i+2}. If A ever encounter a configuration containing state q_{accept}, then an accepting configuration has been found and A accept the computation.

The transformation we just described from M to A is in fact a map-reduction from E_{TM} to E_{2DFA}, and therefore it proves that E_{2DFA} is undecidable.

In fact, E_{2DFA} is co-enumerable but not enumerable. The co-enumerability of E_{2DFA} follows from the observation that the acceptance problem for 2DFA (A_{2DFA}) is decidable. The proof is similar to the one for A_{LBA} from section 5.1 of the book.
Alternatively you can easily reduce A_{2DFA} to A_{LBA} which is proved decidable in the book.

Then a TM recognizing $\overline{E_{2DFA}}$ can be defined as follows: on input 2DFA A consider all the strings $w \in \Sigma^*$ in lexicographic order, and for each one of them check if A accepts w using the decoder for A_{2DFA}. If some string w is ever accepted by A, then accept A. Otherwise keep trying with some other string w.

This proves that E_{2DFA} is ω-enumerable. Finally, E_{2DFA} cannot be enumerable, because if it were both enumerable and ω-enumerable it would be decidable which we know is false.

Problem 4

Let L be a language.

(a) Show that if $L \leq_m \overline{L}$ (i.e., L map reduces to the complement of L), then L is either (1) decidable or (2) neither enumerable nor ω-enumerable.

Solution: The language L is either enumerable or not.

First assume L is enumerable. Notice that $L \leq_m \overline{L}$ implies $\overline{L} \leq_m L$. Since L is enumerable, then also \overline{L} is enumerable and by theorem 4.16, L is decidable.

Now assume L is not enumerable and assume for contradiction that L is ω-enumerable. By definition, this means that \overline{L} is enumerable. Since $L \leq_m \overline{L}$, this implies that also L is enumerable, contradicting our assumption.

(b) The following statement is false:

"If L is decidable then $L \leq_m \overline{L}$"

Find a counterexample! I.e., find a decidable language L_1 such that L_1 does not map reduce to its complement. Now, find another counterexample! I.e., find a decidable language L_2 different from L_1 such that L_2 does not map reduce to $\overline{L_2}$. Finally, prove that L_1 and L_2 are the only two counterexamples! I.e., show that for any decidable language L different from L_1 or L_2, it holds $L \leq_m \overline{L}$.

Solution: Let L_1 be the set of all strings over the alphabet Σ. Then L_1 cannot be map reduced to $\overline{L_1}$ because a map reduction from L_1 to $\overline{L_1}$ should map strings in L_1 to some string in $\overline{L_1}$, but $\overline{L_1}$ is the empty set and no such string exists.

Similarly the empty set $L_2 = \emptyset$ cannot be map-reduced to its complement $\overline{L_2} = L_1$, giving another counter example to the statement in the problem.

Now consider any decidable language L which is neither Σ^* nor the empty set \emptyset. We want to prove that L is map-reducible to \overline{L}. Since L is not empty, there exists a string w_1 such that $w_1 \in L$. Similarly, since L is not Σ^*, there exists a string w_2 such that $w_2 \notin L$. Finally since L is decidable, there exists a Turing
machine M that decides L. Consider the function defined by the following Turing machine:

(a) On input w, simulates M on input w.
(b) If M accepts, then output w_2
(c) If M rejects, then output w_1.

This is obviously a Turing computable function, and it maps all strings in L to w_2 which belongs to \overline{L}, and all strings not in L to w_1 which is not an element of \overline{L}. Therefore, the function is a reduction from L to \overline{L}.