Due: beginning of class on Fri., Mar 17, 2000

Problem 1
In class we proved that the language

\[\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \} \]

is not decidable by reduction from the acceptance problem \(A_{TM} \).

In this problem you are asked to give a direct proof of the same result. Prove (using a diagonalization argument) that the language \(\text{HALT}_{TM} \) is undecidable.

Problem 2
In the second midterm you were asked to prove that the language

\[L = \{ \langle G, E \rangle \mid G \text{ is a CFG and } E \text{ is a regular expression such that } \mathcal{L}(G) \subseteq \mathcal{L}(E) \} \]

In this problem you are asked to study what happens if you exchange \(E \) and \(G \) in the definition of \(L \). That is, consider the language

\[L' = \{ \langle G, E \rangle \mid G \text{ is a CFG and } E \text{ is a regular expression such that } \mathcal{L}(E) \subseteq \mathcal{L}(G) \} \].

Is \(L' \) decidable? (Prove or disprove)

Problem 3
Do problem 5.21(b) from the book. I.e., show that the emptiness problem \(E_{2DFA} \) for two headed finite automata is undecidable. (See the textbook for precise definition of 2DFA and \(E_{2DFA} \).)

Also, answer the following questions: is \(E_{2DFA} \) enumerable? is \(E_{2DFA} \) co-enumerable? (Briefly justify your answer)
Problem 4

Let L be a language.

(a) Show that if $L \leq_m \overline{L}$ (i.e., L maps to the complement of L), then L is either (1) decidable or (2) neither enumerable nor co-enumerable.

(b) The following statement is false:

‘If L is decidable then $L \leq_m \overline{L}$’

Find a counterexample! i.e., find a decidable language L_1 such that L_1 does not map reduce to its complement. Now, find another counterexample! i.e. find a decidable language L_2 different from L_1 such that L_2 does not map reduce to $\overline{L_2}$. Finally, prove that L_1 and L_2 are the only two counterexamples! i.e., show that for any decidable language L different from L_1 or L_2, it holds $L \leq_m \overline{L}$.

(c) Optional (This part won’t be graded): Can you find a non-decidable language such that $L \leq_m \overline{L}$? (Notice: from part (a) you know that L is neither enumerable nor co-enumerable.)