Due: beginning of class on Fri., Feb 25, 2000

Problem 1

Let \(L \) be the set of all strings

\[
a^{n_1}b^{n_2}b \ldots a^{n_t}b \in \Sigma^* = \{a, b\}^*
\]

where \(t, n_1, \ldots, n_t \geq 0 \) are positive integers such that \(n_j \neq j \) for some \(j \in \{1, \ldots, t\} \).

(As usual, \(a^{n_i} \) denotes the strings consisting of \(n_i \) copies of the letter “a”.) In this problem you will prove that \(L \) is a context free language. You can break your proof into the following subproblems:

- First prove that the language \(L' = \{c^n d^m e; n + 1 \neq m\} \) over the alphabet \(\{c, d, e\} \) is context free giving a context free grammar that generates \(L' \).

- Then consider \(c, d, e \) as variable symbols and extend the grammar from the first part with rules for \(c, d, e \) in such a way that the new grammar generates the language \(L \).

Problem 2

Transform the following PDA into an equivalent grammar.

![Diagram](image)

Figure 1: Push down automaton \(M \)
Problem 3

Let the reverse of a language L^R be as defined in problem 1.24 of the textbook. In this problem you will show that the reverse of a context free language is context free. Answer the following questions:

- Show how to transform any context free grammar G into another grammar G' such that the language generated by G' is the reverse of the language generated by G.

- Show how to transform any PDA M into another PDA M' such that the language generated by M' is the reverse of the language generated by M.

Problem 4

For each of the following languages says whether the language is context free or not, and prove it.

- $L_1 = \{a^n b^n c^{n+m}|n, m \geq 0\}$
- $L_2 = \{a^n b^{n+1} c^{n+2}|n \geq 0\}$
- $L_3 = \{a^n b^n c^n|n, m \geq 0\}$
- $L_4 = L_1 \cap L_3 = \{a^n b^n c^{2n}|n \geq 0\}$