Answer the following questions:

1. **4 points** Write a deterministic finite automaton to recognize each of the following languages.

 \[L_1 = \{ w \in \{a, b\}^* | \text{each } a \text{ in } w \text{ is immediately preceded and immediately followed by a } b \} \]

 \[L_2 = \{ w \in \{a, b\}^* | w \text{ has both } ab \text{ and } ba \text{ as substrings} \} \]
2. **3 points** Show that if \(L \) is a regular language, then so is \(L^R \) where \(L^R = \{ x^R | x \in R \} \). \(x^R \) is the reverse string of the string \(x \). Present a cogent argument outlining the main ideas.

Hint: Make use of nondeterminism.

Since \(L \) is a regular language there is a NFA, say \(A \) accepting it. To obtain \(A_{LR} \) (an automaton accepting \(L^R \)) we proceed as follows:

(a) the states of \(A_{LR} \) are the same as of \(A \)
(b) the alphabet is the same
(c) the transition function is obtained by reversing all arrows in \(A \)
(d) to obtain the initial state of \(A_{LR} \) add a new state and add \(\varepsilon \)-transitions too all states which were final states in \(A \). The newly added state is the initial state of \(A_{LR} \)
(e) there is only one final state, namely the state which was initial state in \(A \)

Why this works:

A word is accepted in \(A_{LR} \) if there is a path from the initial state to the final state. But given the construction this means that in \(A \) there is a path from the initial state to one of the final states. Therefore if \(w \in L(A_{LR}) \) if \(w^R \in L \).

The above argument works the other way around, therefore \(w \in L \) implies \(w^R \in L(A_{LR}) \). This proves that \(L(A_{LR}) = L^R \)

3. **3 points** Design a nondeterministic finite automaton for the following language.
\[L = \{ x \in \{0,1\}^* | x \text{ has 101 as a substring} \} \]