
When memory hierarchy
meets virtual memory

Hung-Wei Tseng

Virtual memory

 6

What happens when creating a process

 7

Virtual memory

heap 
 
 
 
 
 
 
 
 

stack

Dynamic allocated data: malloc()

Local variables,
arguments

code

static data

program

code

static data

Linux contains a .bss
section for uninitialized

global variables

Previously, we talked about virtualization

 8

Virtual memory

heap 
 
 
 
 
 
 
 
 

stack

code

static data

Virtual memory

heap 
 
 
 
 
 
 
 
 

stack

code

static data

Virtual memory

heap 
 
 
 
 
 
 
 
 

stack

code

static data

Virtual memory

heap 
 
 
 
 
 
 
 
 

stack

code

static data

Processor
Virtually, every process seems to

have a processor, but only a few of
them are physically executing.

DRAM

How to share DRAM?

• Both application A and application B would like to use the same
machine, the same physical memory

• Each application wants to own memory
• Each application should not touch data of the other

 9

Many applications, one memory

Physical memory of
the machine Application BApplication A

• Both application A and application B would like to use the same
machine and the sum of their memory demands exceeds the
available physical memory?

 10

Or — we just cannot have big enough memory

Physical memory of the machine Application BApplication A

• My program fit in machine A’s memory, but not in machine B?

 11

Or what if — mine is larger than yours?

physical
memory of
machine A

 physical
memory of
machine BApplication

?

Portability

• Every program lives in the virtual memory address space
• The machine instructions use virtual memory addresses
• The data are allocated in the virtual memory address space
• The CPU works with OS to figure out how virtual memory  

address map to physical locations

 12

Virtual memory

CPU

Memory
Hierarchy

Virtual memory

Storage Devices

Physical memory

When cache meets virtual memory

 13

CPU

address mapping

Virtual
memory

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

• Paging: partition virtual/physical memory spaces into fix-sized pages
• Demand paging: Allocate a physical memory page for a virtual

memory page when the virtual page is needed
• There is also shadow paging used by embedded systems, mobile phones

— they load the whole program/data into the physical memory when you
launch it

 14

Demand paging

• Paging: partition virtual/physical memory spaces into fix-sized pages
• Demand paging: Allocate a physical memory page for a virtual

memory page when the virtual page is needed

 15

Demand paging

Application A0

X

Application B

X

0
Physical memory of

the machine0

each of these
cells is a page

• Page fault: if the demanding page is not in the physical memory
• How to handle page fault: the processor raises an exception and

transfers the control (change the PC) to the page fault handler in OS
code
• Allocates a physical memory location for the page
• Creates an entry recording this allocation

 16

Page fault

Application A0

X

Application B

X

0
Physical memory of

the machine0

each of these
cells is a page

Page fault

— where?

• Processor receives virtual addresses from the running code, main
memory uses physical memory addresses

• Virtual address space is organized into “pages”
• The system references the page table to translate addresses

• Each process  
has its own  
page table

• The page table  
content is  
maintained  
by OS

virtual page # offset

physical page # offset

valid

 17

Address translation

VA:

PA:

• Break the virtual page number into several pieces
• If one piece has N bits, build an 2N-ary tree
• Only store the part of the tree that contain valid pages
• Walk down the tree to translate the virtual address

 22

Hierarchical page table

level 2 index offsetlevel 1 index

physical page # offset

• Two-level, 4KB, 10 bits index in each level
• If we are accessing 0x1006000 now…

10 bits 10 bits offset = 12 bits

 23

Page table walking example

0000000100 0000000110 000000000000

0x7fffffffe000

0x4a

the memory page in 0x7fffffffe000

physical page # offset
1001010 000000000000

• Only store the valid
second level pages.

1

0

1

0

0

0

0

0

0

0

valid

 24

Hierarchical page table
1

1

1

1

0

1

1

1

1

0

1

1

1

1

0

1

1

0

1

1

Each of these nodes
must fit in a page

Virtual memory in practice

 25

Address translation in x86-64

 26

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

CPU
CR3

…
…

…

512 entries

…
…

…

512 entries

…
…

…

512 entries

…
…

…

512 entries

11:0 (12 bits)
physical page # page offset

Address translation in x86-64

 27

63:48 (16 bits) 47:39 (9 bits) 38:30 (9 bits) 29:21 (9 bits) 20:12 (9 bits) 11:0 (12 bits)
SignExt L4 index L3 index L2 index L1 index page offset

CPU
CR3

…
…

…

512 entries

…
…

…

512 entries

…
…

…

512 entries

…
…

…

512 entries

11:0 (12 bits)
physical page # page offset

May have 10 memory accesses for a “MOV” instruction!

Storage Devices

Physical memory

When cache meets virtual memory

 28

CPU

address mapping

Virtual
memory

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

0x000000000000

0xFFFFFFFFFFFF

Code
Static Data

Data

Heap

Stack

Cache

• TLB: Translation Look-aside Buffer
• a cache of page table

• small, high-associativity
• miss penalty: access to page table in main memory

Processor

$

main memory

1.

VA

PA
3.

PA
2.

Too slow!

Processor

$

main memory

1.
VA

PA
2.

TLB

TLB increase the hit time!

 29

Cache + Virtual Memory

50 ns+ latency

• Virtual Cache
• The cache also uses virtual addresses
• Address translation is required only

when miss.
Processor

$

main memory

1.
VA

PA
2.

TLB

1.
VA

 31

Cache+Virtual Memory

• Multiple processes accessing to the same virtual address —
shm_open & mmap function
• Process A accessed 0x10000. Process B also want to access 0x10000

• Flush the cache when context switch
• Attach PID to cache

0x10000

0x10000 0x10000?
virtual addresses of Bvirtual addresses of A

 32

Problems of Virtual Cache

slowdown multiprogrammed systems

increase hardware costs

cache

• Alias: A physical address maps to different virtual addresses
• Two copies of data in cache due to copy on write. One may get the wrong

data if the other is modified.

0x10000

0x10000

0xFF0000

physical addressvirtual address

 33

Problems of Virtual Cache

cache
0x30000

0x30000

also points to 0xFF0000

• TLB and cache can be accesses at the same time — the cache must
accept virtual address

• No matter what virtual addresses are used, as long as they map to
the same physical locations, the mapped cache block need to be at
the same location in cache — cache can use your virtual memory
address to reach exactly the same block in the cache using physical
address

• The cache needs to store physical address as the tag to identify if
they are the same data?

 35

What do we need?

va
lid tag datadi
rty

va
lid tag datadi
rty

 36

Accessing the cache

hit? miss?hit? miss?

=?=?

tag
block 
offsetindex

1000 0000 0000 0000 0000 0001 0101 1000memory address:

Offset: 
The position of the  

requesting word in a cache block
Hit: The data was found in the cache  

Miss: The data was not found in the cache

1000 0001 0000 1000 00001 0 1000 0000 0000 0000 00001 1

memory address: 0x8 0 0 0 0 1 5 8

Set: cache blocks/lines sharing the same index.
A cache is called N-way set associative cache if N blocks
share the same set/index (this one is a 2-way set cache)

valid: if the data is meaningful
dirty: if the block is modified

Block / Cacheline: The basic unit of data storage in cache. Contains
all data with the same tag/prefix and index in their memory addresses

Tag:  
the high order address bits stored
along with the data in a block to identify
the actual address of the cache line.

• Force aliasing virtual addresses mapped to the same cache location.
• Cache stores tag fields of “physical addresses”

• the physical tag is also the physical page number!

 37

What’s the solution?

virtual page # page offset

$TLB

index+block offset

physical tag ==
physical page #

physical page #

offsetphysical page #

C = ABS
lg(S)+lg(B) = 12

C = 1*(212) = 4KB
if A = 1 (DM cache)

• Force aliasing virtual addresses mapped to the
same cache location.
• The cache uses the “index” field to place data blocks
• Page offset remains the same in virtual and physical

addresses
• index field must be inside the page offset to guarantee

that aliasing are mapped to the same place
• Cache stores tag fields of “physical addresses”

Processor

$

main memory

1.
VA

PA
2.

TLB

1.
VA

 38

Virtually indexed, physically tagged cache

PA
2.

=

miss

TLB + cache

 39

va
lid tag datadi
rty

=?

hit? miss?

tag index block 
offset

0000 0000 0000 0010 00001 0

memory address: 1000 0000 0000 0000 0000 0001 0101 1000

page number page offset

0000 0000 0000 0010 00001000 0000 0000 0000 0000

TLB

Cache array

Stores the tag of
“physical addresses”,
which is also the
“physical page #”!

virtual page # physical page #

of bits in page offset == # bits in
index and offset

va
lid tag datadi
rty

Virtually indexed, physically tagged cache

=?

hit? miss?

 40

tag index offset

0000 0000 0000 0010 00001 0

memory address: 1000 0000 0000 0000 0000 0001 0101 1000

page number page offset

0000 0000 0000 0010 00001000 0000 0000 0000 0000

TLB

Cache array

Stores the tag of
“physical addresses”,
which is also the
“physical page #”!

virtual page # physical page #

of bits in page offset == # bits in
index and offset

C = ABS
lg(S)+lg(B) = 12

C = 1*(212) = 4KB
if A = 1 (DM cache)

• The processor runs@2GHz. 20% are L/S
• L1 I-cache miss rate: 5%, hit time: 1 cycle
• L1 D-cache miss rate: 10%, hit time: 1 cycle, 10% evicted blocks are dirty
• L2 U-Cache miss rate: 20%, hit time: 10 cycles, 20% evicted blocks are

dirty
• L1 TLB miss rate: 1%, hit time < 1 cycle

• 200 cycles penalty
• Main memory hit time: 100 cycles
• All caches are write-back, write-allocate

CPIaverage=1+
20%*(1%*200+10%*(1+10%)*(10+20%*(1+20%)*(100)))

=5.85+1%*200+1*(5%*(10+20%*(1+20%)*(100)))
 42

Cache & Performance

• The processor runs@2GHz. 20% are L/S
• L1 I-cache miss rate: 5%, hit time: 1 cycle
• L1 D-cache miss rate: 10%, hit time: 1 cycle, 10% evicted blocks are dirty
• L2 U-Cache miss rate: 20%, hit time: 10 cycles, 20% evicted blocks are dirty
• L1 TLB miss rate: 1%, hit time < 1 cycle

• 200 cycles penalty
• Main memory hit time: 100 cycles
• All caches are write-back, write-allocate

 43

Put it all together

33

CPU

D-L1 $

L2 $

tag index 0

~

tag index B-1

I-L1 $

tag index offset tag index offset

5% miss

DRAM

20% miss

1 cycle (no overhead) if hit,  
1% needs 200 cycles for TLB misses

10 cycles if hit

100 cycles if hit

victim tag index 0

~

victim tag index B-1

10% miss10% dirty
tag index 0

~

tag index B-1

20% dirty
victim tag index 0

~
victim tag index B-1

tag index 0

~

tag index B-1

CPIaverage= 1+

20%*(1%*200+10%*(1+10%)*(10+20%*(1+20%)*(100)))

=5.85+1%*200+1*(5%*(10+20%*(1+20%)*(100)))

