Outline

- Definition of performance

- Execution time

- What affects your performance

Performance

What do you want for a computer?

- Latency/Execution time

- Frame rate

- Responsiveness

- Real-time

+ Throughput

+ Cost
- Volume

- Weight
- Battery life
- Low power/low temperature

. Reliability

How about running a single program

- | Latency/Execution time
- Frame rate

* Responsiveness The most direct measurement

- Real-time of performance
+ Throughput

+ Cost

-+ Volume

- Weight

- Battery life

- Low power/low temperature
- Reliabllity

Evaluating the execution time of a
program

Recap: Von Neumann architecture

4 oy
-y
L.
.
-...
L.
-y

‘memory ;.
81 CPU is a dominant factor of
: performance since we heavily
v | rely on it to execute programs
2 [
3
’”"\g

By pointing “PC” to different \
part of your memory, we ca)\
perform different functions! o

Recap: Clock — synchronizing hardware components

- A hardware signal defines when data for any specific component is ready to
use by others

Think about the clock in real life!

- We use edge-triggered clocking
Values stored in the sequential logic is updated only on a clock edge

le clock cycle ,

T : 8 . Pr——] e e ——— i ’
o214 - - - -“. o % P
m bt ¥l o - ¥ kY Y W S : . |
| ! T a2
o | &5 - — & i { . i -
' +—4 1

4

i 4

0 QO 0G U0

| Vlh] 0I0] > rows fryvRee
eyt b LA T P _ J Yy - TR 2
I~ 5r il T i Pl Bl |l 1 —_
|) "_ .

-~ ~ -
Tanzry

'y Pl

Register 0+ . |
Cfile 4-bit,ALU

J o Ol o il 5L ks %mu
|

Execution Time

+ The simplest kind of performance
- Shorter execution time means better performance
+ Usually measured in seconds

instruction memory

clock
I_»(’ ™\ 120007a30: .. 0£00bb27 ldah gp,l5(tl2)
120007a34: 509cbd23 1da gp,-25520(gp)
120007a38: 00005d24 1dah t1,0(gp)
Processor 120007a3c: 0000bd24 1ldah t4,0(gp)
120007a40: 2cad422a0 1dl t0,-23508(tl)
PC 120007a44: 130020e4 Dbeqg t0,120007a94
_ Y, 120007a48: 00003d24 1ldah t0,0(gp)
120007a4c: 2cade2b3 stl zero,-23508(tl)
’? —» 120007a50: 0004ff47 clr v0
HOW many Of these) 120007a54: 28ad4e5b3 stl zero,-23512(t4)
- 120007a5c: 0e0020e4 Dbeqg t0,120007a98
120007a60: 0204el47 mov t0,tl
HOW IOng iS |t take to 120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

execution each of these?
Cycles per instruction * cycle time

10

Performance Equation

| | Instructions Cycles Seconds
Execution Time = X — X
Program Instruction Cycle
How many instruction How long is it take to execute

are executed? each instruction
ET=IC*CPI*CT i
IC (Instruction Count)
CPI (Cycles Per Instruction)
CT (Seconds Per Cycle)

1 Hz = 1 second per cycle; 1 GHz = 1 ns per cycle

11

Relative performance

Can be confusing
A runs in 12 seconds

B runs in 20 seconds

We know A is faster, but
A/B = .6, so Ais 40% faster, or 1.4X faster, or B is .40% slower
B/A=1.67, so Ais 67% faster, or 1.67X faster, or B is 67% slower

Needs a precise definition

13

Speedup

- Compare the relative performance of the baseline system and the improved
system

- Definition

Execution time paseiine

Speedup = —
Execution time improved system

14

Instructions % Cycles Seconds

Execution Time = .
Program Instruction Cycle

18

What affects performance

Demo: programmer & performance

Row-major, column major
How do you know this?

Let’s identify where the performance gain is from!
Using “performance counters”
You may use “perf stat” in linux

You can also create your own functions to obtain counter values
https://github.ncsu.edu/htseng3/CSC456/tree/master/performance

23

https://github.ncsu.edu/htseng3/CSC456/tree/master/performance

Applications

- Different applications can have different CPls on the same machine

20

Compiler

- Compiler can change the combination of instructions and lead to different
CPls, instruction counts.

27

Summary: Performance Equation

Instructions % Cycles Seconds

Execution Time = _
Program Instruction Cycle

ET =1C * CPI * Cycle Time
IC (Instruction Count)
ISA, Compiler, algorithm, programming language
CPI (Cycles Per Instruction)
Machine Implementation, microarchitecture, compiler, application, algorithm, programming
language
Cycle Time (Seconds Per Cycle)
Process Technology, microarchitecture, programmer

28

Amdahl’s Law

Amdahl’s Law

1
() +(1-%)

- X: the fraction of “execution time” that we can speed up in the target
application

-+ S: by how many times we can speedup X

. total execution time = 1

]
» . ;

total execution time = ((é)+(1-Xx))

-
-
—

Speedup =

30

Performance Example

Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CP| of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.

If we double the CPU clock rate to 4GHz but keep using the same memory module, the
average CPI for load/store instruction will become 12 cycles. What'’s the performance
improvement after this change?

How much time in load/store?
500000 * (0.2*6) * 0.5 ns = 300000 ns 60%

How much time in the rest?
500000 * (0.8*1) * 0.5 ns = 200000 ns 40%

Performance Example

Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CP| of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.

If we double the CPU clock rate to 4GHz but keep using the same memory module, the
average CPI for load/store instruction will become 12 cycles. What'’s the performance
improvement after this change?

1
0.4

22 +(1-0.4)

3
0.8

Speedup =

Speedup = =1.25

Amdahl’s Law: Revisited

Performance Example

Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CP| of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.

If we double the CPU clock rate to 4GHz but keep using the same memory module, the
average CPI for load/store instruction will become 12 cycles. What'’s the performance
improvement after this change?

1
0.4

22 +(1-0.4)

3
0.8

Speedup =

Speedup = =1.25

Amdahl’s Corollary #1

- Maximum possible speedup Smayx, if we are targeting x of the program.

S = infinity
:

0%1(1 -X))

(1-x)

Smax —

Smax —

38

Maximum of speedup

- Call of Duty Black Ops Il loads a zombie
map for 10 minutes on my current machine,
and spends 20% of this time in integer instructions

How much faster must you make the integer unit to make the map Ioadlng 5
minutes faster?

1

Smax —

(1-x)
1

(1-20%)

1.25 =

2X Is not possible.

39

Amdahl’s Corollary #2

- Make the common case fast (i.e., x should be large)!
- Common == most time consuming not necessarily the most frequent

- The uncommon case doesn’t make much difference
- Be sure of what the common case is

- The common case can change based on inputs, compiler options,
optimizations you've applied, etc.

43

ldentify the most time consuming part

-+ Compile your program with -pg flag

- Run the program

* |t will generate a gmon.out
+ gprof your_program gmon.out > your_program.prof

- It will give you the profiled result in your_program.prof

44

If we repeatedly optimizing our design based on Amdahl’s law...

Common case
B /x=>1.4x
o 4x =>1.3x

B 1.3x=>1.1x

Total = 20/10 = 2x

- With optimization, the common becomes uncommon.
- An uncommon case will (hopefully) become the new common case.
- Now you have a new target for optimization.

45

Demo

- Quicksort takes a lot of time if we want to sort a 300M array
- GPU gives you 10x speed up!

-+ New bottleneck emerges!

46

Don’t hurt non-common part too mach

+If the program spend 90% in A, 10% in B. Assume that an optimization can
accelerate A by 9x, by hurts B by 10x...

- Assume the original execution time is T. The new execution time

T1x0.9
9

Tnew= 1 1T

+ Ix0.1x10

Tnew=

Speedup= 1-'1-1_ = 0.91

47

Amdahl’s Corollary #3

- Assume that we have an application, in which x of the execution time in this
application can be fully parallelized with S processors. What'’s the speedup if
we use a S-core processor instead of a single-core processor?

48

Multiple optimizations

We can apply Amdahl’s law for multiple optimizations

These optimizations must be dis-joint!
If optimization #1 and optimization #2 are dis-joint:

1

Speedup =

XOpt1 XOpt2

(1 - XOpt1 'XOptZ) -+

SOpt1 SOptZ

If optimization #1 and optimization #2 are not dis-joint:

— Xopt Xopt2 Xopt180pt2
(1- Xoptionly = Xopt2oniy= Xopt180pt2)
+ SOpt10nly SOpt20nly T SOpt1&0pt2
|(total execution time = 1
|
> (<€)|
XOpt1 Only XOthOnIy XOpﬂ &Opt2

50

Amdahl’s Law for multicore processors

- Assume that we have an application, in which 50% of the application can be
fully parallelized with 2 processors. Assuming 80% of the parallelized part

can be further parallelized with 4 processors, what’s the speed up of the
application running on a 4-core processor?

Code can be optimized for 2-core = 50%*(1-80%) = 10%
Code can be optimized for 4-core = 50%*80% = 40%

1
Speedupquad— (1- 0.5) 4 —010 4 040 =1.54
> 4

51

Case study: more cores?

If you cannot make your mobile Apps multithreaded, Apple A7 is the best

3000 B Apple A7

B NVIDIA
Tegra 4

2250 ~ Qualcomm

Snapdragon
800

B Exynos
5420

1500

GeekBench 3 GeekBench 3 Multi-threaded
Single-threaded

53

Case study:

Corollary #2

The CPU is not the main performance
bottleneck

CPU parallelism doesn’t help, either

You might consider
GPU
network
storage (loading maps)

54

LOL

‘toms League of Legends - CPU Scaling

HAT{ DWA R E GeForce GTX 650 Ti, 1680x1050,

THE AUTHORITY ON TECH Highest Detail Settings

Core i5-3550 @ 3.3/3.7 GHz
(IB, Quad-Core)

Core i3-3220 @ 3.3 GHz
(IB, Dual-Core HT)

Pentium G860 @ 3.0 GHz 126.0
(SB, Dual-Core) 141.8

Phenom Il X4 965 @ 3.4 GHz
(Deneb, Quad-Core)

FX-8350 @ 4.0/4.2 GHz
(Vishera, Octa-Core)

FX-4170 @ 4.2/4.3 GHz 105.0
(Zambezi, Quad-Core) 137.3

Athlon I X2 260 @ 3.2 GHz 93.0
(Regor, Dual-Core) 102 6

0 20 40 60 &0 100 120 140

. B Min. FPS ®Avg. FPS Frames Per Second [higher is better] ,.

Power & Energy

Power

Dynamic power: P=aCV2f
a:. switches per cycle
C: capacitance
V: voltage
- f: frequency, usually linear with V
Doubling the clock rate consumes more power than a quad-core processor!

Static/Leakage power becomes the dominant factor in the most advanced
process technologies.

Power is the direct
CO ntri b u tO r Of e h e at” Leakage vs. Dynamic Power Trend (suggestive)

Packaging of the chip

Heat dissipation cost J ‘ ll

57

Energy

- Energy=P " ET
- The electricity bill and battery life is related to energy!

-+ Lower power does not necessary means better battery life if the processor
slow down the application too much

58

Double Clock Rate or Double the Processors?

- Assume 60% of the application can be fully parallelized with 2-core or
speedup linearly with clock rate. Should we double the clock rate or duplicate
a core?

1 _
1-0.6)4—25— ~ 1.43

2

Speedupz-core = (
POwerZ-core — 2X
EnergyZ-core — 2 * [1/(1 43)] —_ 1 39

Speedupaxciock = 2
Poweraxciock = 8X
Energyaxciock=8/2 =4

59

Other important metrics

Bandwidth

-+ The amount of work (or data) during a period of time
- Network/Disks: MB/sec, GB/sec, Gbps, Mbps
- Game/Video: Frames per second

- Also called “throughput”

- “Work done” / “execution time”

61

Response time and BW trade-off

- Increase bandwidth can hurt the response time of a single task
- If you want to transfer a 2 Peta-Byte video from UNC

+ 25 miles from NCSU

-+ Assume that you have a 100Gbps ethernet
- 2 Peta-byte over 167772 seconds = 1.94 Days
- 22.5TB in 30 minutes
- Bandwidth: 100 Gbps

62

Or ...

Toyota Prius

25 miles from UNC
75 MPH on highway!
50 MPG
Max load: 374 kg = 2,770

hard drives (2TB per drive)

10Gb Ethernet

—_ 7
" /)
y },
. -

- 100 Gb/s or
bandwidth |1.53TB/sec 12 5GB/sec
2 Peta-byte over 167772
Iatency 1 hour seconds = 1.94 Days
response You can start watching the movie as

time

You see nothing in the first hour

soon as you get a frame!

63

Reliability

Mean time to failure (MTTF)

- Average time before a system stops working
Very complicated to calculate for complex systems

Hardware can fail because of
Electromigration

- Temperature
High-energy particle strikes

64

GFLOPS (Giga FLoating-point Operations Per Second)

MIPS does not include instruction count!

-+ Cannot compare different ISA/compiler
Different CPI of applications, for example, /O bound or computation bound
If new architecture has more IC but also lower CPI?

GFLOPS clock rate

XBOX One 1310(1.75 GHz

PS4 1843(1.6 GHz

Core i7 EE 3970X + AMD

Radeon 6990 5099|3.5 GHz

65

Is GFLOPS (Giga FLoating-point Operations Per Second) a good metric?

-+ Cannot compare different ISA/compiler
- What if the compiler can generate code with fewer instructions?
- What if new architecture has more IC but also lower CPI1?

- Does not make sense if the application is not floating point intensive

. o | 9
GFLOPS = # of floating point instructions / 10

Execution Time
ICX % of floating point instructions ~ Clock Rate X% FP ins.

ICX CPIXCycleTime X109 CPI X 109

60

