
• Definition of performance
• Execution time
• What affects your performance

 2

Outline

Performance

 3

• Latency/Execution time
• Frame rate
• Responsiveness
• Real-time
• Throughput
• Cost
• Volume
• Weight
• Battery life
• Low power/low temperature
• Reliability

 4

What do you want for a computer?

• Latency/Execution time
• Frame rate
• Responsiveness
• Real-time
• Throughput
• Cost
• Volume
• Weight
• Battery life
• Low power/low temperature
• Reliability

 6

How about running a single program

The most direct measurement
of performance

Evaluating the execution time of a
program

 7

Recap: Von Neumann architecture

 8

memory

2

8

3

CPU is a dominant factor of
performance since we heavily
rely on it to execute programs

By pointing “PC” to different
part of your memory, we can
perform different functions!

Register
file 4-bit ALU

• A hardware signal defines when data for any specific component is ready to
use by others
• Think about the clock in real life!

• We use edge-triggered clocking
• Values stored in the sequential logic is updated only on a clock edge

 9

Recap: Clock — synchronizing hardware components

clock cycle

memory

• The simplest kind of performance
• Shorter execution time means better performance
• Usually measured in seconds

Processor
PC

120007a30: 0f00bb27 ldah gp,15(t12)
120007a34: 509cbd23 lda gp,-25520(gp)
120007a38: 00005d24 ldah t1,0(gp)
120007a3c: 0000bd24 ldah t4,0(gp)
120007a40: 2ca422a0 ldl t0,-23508(t1)
120007a44: 130020e4 beq t0,120007a94
120007a48: 00003d24 ldah t0,0(gp)
120007a4c: 2ca4e2b3 stl zero,-23508(t1)
120007a50: 0004ff47 clr v0
120007a54: 28a4e5b3 stl zero,-23512(t4)
120007a58: 20a421a4 ldq t0,-23520(t0)
120007a5c: 0e0020e4 beq t0,120007a98
120007a60: 0204e147 mov t0,t1
120007a64: 0304ff47 clr t2
120007a68: 0500e0c3 br 120007a80

instruction memory

How long is it take to
execution each of these?

How many of these?
Instruction Count!

Cycles per instruction * cycle time
 10

Execution Time

clock

• ET = IC * CPI * CT
• IC (Instruction Count)
• CPI (Cycles Per Instruction)
• CT (Seconds Per Cycle)

• 1 Hz = 1 second per cycle; 1 GHz = 1 ns per cycle

Execution Time =
Instructions

Program
Cycles

Instruction
Seconds

Cycle

How many instruction  
are executed?

How long is it take to execute  
each instruction  

 11

Performance Equation

• Can be confusing
• A runs in 12 seconds
• B runs in 20 seconds
• We know A is faster, but

• A/B = .6 , so A is 40% faster, or 1.4X faster, or B is .40% slower
• B/A = 1.67, so A is 67% faster, or 1.67X faster, or B is 67% slower

• Needs a precise definition

 13

Relative performance

• Compare the relative performance of the baseline system and the improved
system

• Definition  

Execution time improved system

Execution time baseline
Speedup =

 14

Speedup

 18

Execution Time =
Instructions

Program
Cycles

Instruction
Seconds

Cycle

What affects performance

 19

• Row-major, column major
• How do you know this?

• Let’s identify where the performance gain is from!
• Using “performance counters”
• You may use “perf stat” in linux
• You can also create your own functions to obtain counter values

• https://github.ncsu.edu/htseng3/CSC456/tree/master/performance

 23

Demo: programmer & performance

https://github.ncsu.edu/htseng3/CSC456/tree/master/performance

• Different applications can have different CPIs on the same machine

 26

Applications

• Compiler can change the combination of instructions and lead to different
CPIs, instruction counts.

 27

Compiler

• ET = IC * CPI * Cycle Time
• IC (Instruction Count)

• ISA, Compiler, algorithm, programming language
• CPI (Cycles Per Instruction)

• Machine Implementation, microarchitecture, compiler, application, algorithm, programming
language

• Cycle Time (Seconds Per Cycle)
• Process Technology, microarchitecture, programmer

Execution Time =
Instructions

Program
Cycles

Instruction
Seconds

Cycle

 28

Summary: Performance Equation

Amdahl’s Law

 29

• x: the fraction of “execution time” that we can speed up in the target
application

• S: by how many times we can speedup x

Speedup =

 30

Amdahl’s Law

total execution time = 1

x

1
(()+(1-x))x

S

total execution time = (()+(1-x))x
S

x
S

• Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CPI of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.
• If we double the CPU clock rate to 4GHz but keep using the same memory module, the

average CPI for load/store instruction will become 12 cycles. What’s the performance
improvement after this change?

Performance Example

How much time in load/store?

How much time in the rest?

500000 * (0.2*6) * 0.5 ns = 300000 ns

500000 * (0.8*1) * 0.5 ns = 200000 ns

60%

40%

• Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CPI of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.
• If we double the CPU clock rate to 4GHz but keep using the same memory module, the

average CPI for load/store instruction will become 12 cycles. What’s the performance
improvement after this change?

Performance Example

1
0.8Speedup = = 1.25

Speedup = 1
(1-0.4)+0.4

2

Amdahl’s Law: Revisited

 34

• Assume that we have an application composed with a total of 500000 instructions, in which
20% of them are the load/store instructions with an average CPI of 6 cycles, and the rest
instructions are integer instructions with average CPI of 1 cycle.
• If we double the CPU clock rate to 4GHz but keep using the same memory module, the

average CPI for load/store instruction will become 12 cycles. What’s the performance
improvement after this change?

Performance Example

1
0.8Speedup = = 1.25

Speedup = 1
(1-0.4)+0.4

2

• Maximum possible speedup Smax, if we are targeting x of the program.

 38

Amdahl’s Corollary #1

Smax =

S = infinity

1
(1-x)

Smax =

1
(+(1-x))x

inf0  

• Call of Duty Black Ops II loads a zombie  
map for 10 minutes on my current machine,  
and spends 20% of this time in integer instructions

• How much faster must you make the integer unit to make the map loading 5
minutes faster?

 39

Maximum of speedup

Smax = 1
(1-x)

1.25 = 1
(1-20%)

2x is not possible.

• Make the common case fast (i.e., x should be large)!
• Common == most time consuming not necessarily the most frequent
• The uncommon case doesn’t make much difference
• Be sure of what the common case is
• The common case can change based on inputs, compiler options,

optimizations you’ve applied, etc.

 43

Amdahl’s Corollary #2

• Compile your program with -pg flag
• Run the program

• It will generate a gmon.out
• gprof your_program gmon.out > your_program.prof

• It will give you the profiled result in your_program.prof

 44

Identify the most time consuming part

• With optimization, the common becomes uncommon.
• An uncommon case will (hopefully) become the new common case.
• Now you have a new target for optimization.

 45

If we repeatedly optimizing our design based on Amdahl’s law...

Common case

7x => 1.4x
4x => 1.3x

1.3x => 1.1x

Total = 20/10 = 2x

• Quicksort takes a lot of time if we want to sort a 300M array
• GPU gives you 10x speed up!
• New bottleneck emerges!

 46

Demo

• If the program spend 90% in A, 10% in B. Assume that an optimization can
accelerate A by 9x, by hurts B by 10x...

• Assume the original execution time is T. The new execution time

 47

Don’t hurt non-common part too mach

Tnew= T 0.9 +
9 + T 0.1 10+ +

Tnew= 1.1T

Speedup= 1.1T
T = 0.91

• Assume that we have an application, in which x of the execution time in this
application can be fully parallelized with S processors. What’s the speedup if
we use a S-core processor instead of a single-core processor?

 48

Amdahl’s Corollary #3

Spar = 1
(1-x)+x

S

• We can apply Amdahl’s law for multiple optimizations
• These optimizations must be dis-joint!

• If optimization #1 and optimization #2 are dis-joint:  
 
 
 

• If optimization #1 and optimization #2 are not dis-joint: 

Speedup =
1

(1- XOpt1-XOpt2) + +
XOpt2

SOpt2

XOpt1

SOpt1

S = 1
(1- XOpt1Only - XOpt2Only- XOpt1&Opt2) + +

XOpt2

SOpt2Only

XOpt1

SOpt1Only

XOpt1&Opt2

SOpt1&Opt2
+

 50

Multiple optimizations

total execution time = 1

XOpt1Only XOpt2Only XOpt1&Opt2

• Assume that we have an application, in which 50% of the application can be
fully parallelized with 2 processors. Assuming 80% of the parallelized part
can be further parallelized with 4 processors, what’s the speed up of the
application running on a 4-core processor?

Speedupquad = 1
(1- 0.5) + 0.10

2
= 1.54

+ 0.40
4

Code can be optimized for 2-core = 50%*(1-80%) = 10%
Code can be optimized for 4-core = 50%*80% = 40%

 51

Amdahl’s Law for multicore processors

• If you cannot make your mobile Apps multithreaded, Apple A7 is the best

 53

Case study: more cores?

• Corollary #2
• The CPU is not the main performance

bottleneck
• CPU parallelism doesn’t help, either
• You might consider

• GPU
• network
• storage (loading maps)

 54

Case study: LOL

Power & Energy

 55

• Dynamic power: P=aCV2f
• a: switches per cycle
• C: capacitance
• V: voltage
• f: frequency, usually linear with V
• Doubling the clock rate consumes more power than a quad-core processor!

• Static/Leakage power becomes the dominant factor in the most advanced
process technologies.

• Power is the direct  
contributor of “heat”
• Packaging of the chip
• Heat dissipation cost

 57

Power

• Energy = P * ET
• The electricity bill and battery life is related to energy!
• Lower power does not necessary means better battery life if the processor

slow down the application too much

 58

Energy

• Assume 60% of the application can be fully parallelized with 2-core or
speedup linearly with clock rate. Should we double the clock rate or duplicate
a core?

Speedup2-core = 1
(1- 0.6)+ 0.6

2
= 1.43

 59

Double Clock Rate or Double the Processors?

Power2-core = 2x
Energy2-core = 2 * [1/(1.43)] = 1.39
Speedup2XClock = 2
Power2XClock = 8x
Energy2XClock = 8 / 2 = 4

Other important metrics

 60

• The amount of work (or data) during a period of time
• Network/Disks: MB/sec, GB/sec, Gbps, Mbps
• Game/Video: Frames per second

• Also called “throughput”
• “Work done” / “execution time”

 61

Bandwidth

• Increase bandwidth can hurt the response time of a single task
• If you want to transfer a 2 Peta-Byte video from UNC

• 25 miles from NCSU
• Assume that you have a 100Gbps ethernet

• 2 Peta-byte over 167772 seconds = 1.94 Days
• 22.5TB in 30 minutes
• Bandwidth: 100 Gbps

 62

Response time and BW trade-off

 Toyota Prius  10Gb Ethernet

bandwidth 1.53TB/sec 100 Gb/s or  
12.5GB/sec

latency 1 hour 2 Peta-byte over 167772
seconds = 1.94 Days

response
time You see nothing in the first hour You can start watching the movie as

soon as you get a frame!

 63

Or ...

• 25 miles from UNC
• 75 MPH on highway!
• 50 MPG
• Max load: 374 kg = 2,770

hard drives (2TB per drive)

• Mean time to failure (MTTF)
• Average time before a system stops working
• Very complicated to calculate for complex systems

• Hardware can fail because of
• Electromigration
• Temperature
• High-energy particle strikes

 64

Reliability

• MIPS does not include instruction count!
• Cannot compare different ISA/compiler
• Different CPI of applications, for example, I/O bound or computation bound
• If new architecture has more IC but also lower CPI?

GFLOPS clock rate

XBOX One 1310 1.75 GHz

PS4 1843 1.6 GHz

Core i7 EE 3970X + AMD
Radeon 6990 5099 3.5 GHz

 65

GFLOPS (Giga FLoating-point Operations Per Second)

• Cannot compare different ISA/compiler
• What if the compiler can generate code with fewer instructions?
• What if new architecture has more IC but also lower CPI?

• Does not make sense if the application is not floating point intensive

 66

Is GFLOPS (Giga FLoating-point Operations Per Second) a good metric?

GFLOPS = # of floating point instructions / 109
Execution Time

IC % of floating point instructions

109IC CPI CycleTime
= =

109CPI
Clock Rate % FP ins.

