
Memory Hierarchy
Hung-Wei Tseng

• Memory wall/gap problem
• Memory hierarchy
• Cache organization

 3

Outline

Memory wall problem

 4

The memory gap problem

 5

CPU

DRAM-
based main

memory
lw $t2, 0($a0)
add $t3, $t2, $a1
addi $a0, $a0, 4
subi $a1, $a1, 1
bne $a1, LOOP
lw $t2, 0($a0)
add $t3, $t2, $a1

The access time of DRAM is around 50ns
100x to the cycle time of a 2GHz processor!

SRAM is as fast as the processor, but $$$

• How many of the following statements explains the reason why B
outperforms C with compiler optimizations

C has lower dynamic instruction count than B
C has significantly lower branch mis-predictions than B
C has significantly fewer branch instructions than B
C can incur fewer data hazards

A. 0
B. 1
C. 2
D. 3
E. 4

 7

Why is C better than B

inline int popcount(uint64_t x){
int c=0;
 while(x) {

 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 c += x & 1;
 x = x >> 1;
 }
 return c;
}

inline int popcount(uint64_t x) {
 int c = 0;  
 int table[16] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};  
 while(x) {

 c += table[(x & 0xF)];
 x = x >> 4;

 }
 return c;
}

B
C

— C only needs one load, one add, one shift, the same amount of iterations

— the same number being predicted.

— the same amount of branches

— Probably not. In fact, the load may have negative effect without architectural supports
Does this make sense if memory

is so slow?

Memory hierarchy

 8

The memory hierarchy

 9

CPU

Main Memory

Secondary Storage

Fastest,  
Most Expensive

Biggest

Access  
time

< 1ns

100ns 

10,000,000ns 
�9

32*  
64-bit registers

L1: 16KB-64KB
L2: 128KB-512KB
L3: Several MBs

Several GBs

500+ GB

$
< 1ns ~  
20 ns Cache

�9

Why can a small, fast SRAM
help?

 11

• Spatial locality: programs tend to access neighboring data/
instructions
• Data structures (e.g. arrays) demonstrate strong spatial locality
• Especially effective for code/instructions — you usually just move to the

next instruction or loop back to the small piece of code
• Temporal locality: programs tend to have frequently accessed data

• You may update/reference the same set of memory locations many times in
your code

 13

Localities in your code

Cache organization

 14

• To capture spatial locality
• We need to put not only just a “word” or small piece of data/instructions, but

a “block” of data/instructions
• To capture temporal locality

• We need to keep frequently used data

 15

Architecting caches to capture localities

Organizing memory locations into blocks

 16

0x0

0x2000

0x1000

0x8000

0x4000

0x3000

0x6000

0x5000

0x7000

0xFFF

0x1FFF

0x2FFF

0x3FFF

0x4FFF

0x5FFF

0x6FFF

0x7FFF

0x8FFF

Processor
PC

block
$

page

A
C

B
D

A B C D E

• To capture spatial locality
• We need to put not only just a “word” or small piece of data/instructions, but

a “block” of data/instructions
• How to distinguish each block?

• To capture temporal locality
• We need to keep frequently used data

 17

Architecting caches to capture localities

• Go through your homework
• Write down the topic and content
• If running out of space: kick out the least recently used content

 18

How do you make a cheatsheet?

1. Performance equation
Performance equation ET=IC*CPI*CT2. Amdahl’s law
Amdahl’s law ET_after = ET_affected/Speedup  

+ ET_unaffected
3. MIPS

Power consumption P = aCV2f

4. Power consumption
MIPS MIPS = IC/(ET*106)5. Performance equation

6. Amdahl’s law
7. MFLOPS

MFLOPS MIPS = No_FP_Ops/(ET*106)

Cacheline/block: data with the
same prefix in their addresses

Tag: the address prefix of
data in the cacheline/block

• Assume each block contains 16B data
• A total of 4 blocks

 19

A simple cache: now with tags associated with blocks

tag data

0b0000 content of  
0b00000000 - 0b00001111

0b0100 content of  
0b01000000 - 0b01001111

0b1111 content of  
0b11110000 - 0b11111111

0b1100 content of  
0b11000000 - 0b11001111

• To capture spatial locality
• We need to put not only just a “word” or small piece of data/instructions, but

a “block” of data/instructions
• A tag associated with each block

• To capture temporal locality
• We need to keep frequently used data

 20

Architecting caches to capture localities

• A cache replacement policy to keep most frequently used
data (e.g. LRU)

• LRU — kick out the least recently used block when we
need to kick out one

• Assume each block contains 16B data
• A total of 4 blocks
• LRU — kick out the least recently used whenever we need to

 21

A simple cache: a block can go anywhere

tag data1. 0x4 0b00000100
0b0000 content of  

0b00000000 - 0b00001111
2. 0x48 0b01001000

0b0100 content of  
0b01000000 - 0b01001111

3. 0xC4 0b11000100

0b1111 content of  
0b11110000 - 0b11111111

4. 0xFC 0b11111100
0b1100 content of  

0b11000000 - 0b11001111
5. 0x12 0b00001100
6. 0x44 0b01000100
7. 0x68 0b01100100

0b0110 content of  
0b01100000 - 0b01101111

• Too slow if the number of entries/blocks/cachelines
is huge

• To capture spatial locality
• We need to put not only just a “word” or small piece of data/instructions, but

a “block” of data/instructions
• A tag associated with each block

• To capture temporal locality
• A cache replacement policy to keep most frequently used data (e.g. LRU)
• LRU — kick out the least recently used block when we need to kick out one

 22

Architecting caches to capture localities

• Performance needs to be better than linear search
• Make cache a hardware hash table!
• The hash function takes memory addresses as inputs

 23

The structure of a cache

va
lid tag datadi
rty

va
lid tag datadi
rty

Set: cache blocks/lines sharing the same index.
A cache is called N-way set associative cache if
N blocks share the same set/index (this one is a
2-way set cache)

1000 0000 0000 0000 00001000 0001 0000 1000 0000 11

Block / Cacheline: The basic unit of data storage in
cache. Contains all data with the same tag/prefix and
index in their memory addressesTag:  

the high order address bits stored along with the data in a
block to identify the actual address of the cache line.

10

valid: if the data is meaningful
dirty: if the block is modified

 24

Accessing the cache

1

va
lid tag datadi
rty

va
lid tag datadi
rty

hit? miss?hit? miss?

=?=?

tag offsetindex
1000 0000 0000 0000 0000 0001 0101 1000memory address:

Offset: 
The position of the  
requesting word in a cache block

Hit: The data was found in the cache  
Miss: The data was not found in the cache

1000 0001 0000 1000 00001 0 1000 0000 0000 0000 00001 1

memory address: 0x8 0 0 0 0 1 5 8

 25

How many bits in each field?

tag index offset

hit?

block / cacheline

hit?

=?=?

lg(block size)
lg(number of sets)
va

lid tag datadi
rty

va
lid tag datadi
rty

• C: Capacity in data arrays
• A: Way-Associativity

• N-way: N blocks in a set, A = N
• 1 for direct-mapped cache

• B: Block Size (Cacheline)
• How many bytes in a block

• S: Number of Sets:
• A set contains blocks sharing the same index
• 1 for fully associate cache

 26

C = ABS

• offset bits: lg(B)
• index bits: lg(S)
• tag bits: address_length - lg(S) - lg(B)

• address_length is 32 bits for 32-bit machine
• (address / block_size) % S = set index

tag index offset

 27

Corollary of C = ABS

Put everything all together: 
How cache interacts with CPU

 30

• Read hit
• hit time

• Read miss?
• Select victim block

• LRU, random, FIFO, ...
• Write back if dirty — will talk later

• Fetch Data from Lower Memory Hierarchy
• As a unit of a cache block

• Data with the same “block address” will be fetch
• Miss penalty

 31

What happens on a read?

CPU

L1 $

L2 $

miss?

write-back 
(if dirty)

lw tag index offset

fetch
tag index 0

~

tag index B-1

va
lid tag datadi
rty

 32

Special case: a direct-mapped cache

=?

hit? miss?

block / cacheline
tag index offset

memory address: 1000 0000 0000 0000 0000 0001 0101 1000

1000 0000 0000 0000 00001

Tag:  
the high order address bits stored
along with the data to identify the
actual address of the cache line.

Block (cacheline): The basic unit of data
storage in cache. Contains all data with
the same tag and index in their address

Hit: The data was found in the cache  
Miss: The data was not found in the cache

0

• Consider a direct mapped (1-way) cache with 16 blocks, a block size
of 16 bytes, and the application repeatedly reading the following
memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,

0b1100010000

 33

Simulate a direct-mapped cache

• lg(16) = 4 : 4 bits are used for the index
• lg(16) = 4 : 4 bits are used for the byte offset
• The tag is 48 - (4 + 4) = 40 bits
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

• C = A B S

• S=256/(16*1) = 16

 34

Simulate a direct-mapped cache
valid tag data

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

1 0b10 miss
hit!

1 0b10
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

miss

miss
hit!

hit!

1 0b111 0b10

hit!
miss

hit!

tag index

tag index offset

tag index offset

 35

Conflict in direct-mapped cache

valid tag data

block / cacheline

1000 0000 0000 0000 0000 0001 01XX XXXX

1000 0001 0000 1000 0000 0001 01XX XXXX

If we have two frequently
used cache blocks:

If they are usually used back-to-back,
one will kick out the other all the time

• Consider a 2-way cache with 16 blocks (8 sets), a block size of 16
bytes, and the application repeatedly reading the following memory
addresses:
• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,

0b1100010000

 36

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (3 + 4) = 25 bits
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

 37

Simulate a 2-way cache
v tag data v tag data

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

1 0b100 miss
hit!

1 0b100
0
1
2
3
4
5
6
7

miss

miss
hit!

hit!

1 0b110

hit!
hit!

hit!

tag index

 44

Way associativity and cache performance

• Help alleviating the hash collision by having more blocks associating
with each different index.
• N-way associative: the block can be in N blocks of the cache

• Fully associative
• The requested block can be anywhere in the cache
• Or say N = the total number of cache blocks in the cache

• Slower
• Increasing associativity requires multiple tag checks
• N-Way associativity requires N parallel comparators
• This is expensive in hardware and potentially slow.
• This limits associativity L1 caches to 2-8.
• Larger, slower caches can be more associative

 45

Pros & cons of way-associate caches

• Write hit?
• Update in-place
• Set dirty bit (Write-Back Policy)

• Write miss?
• Select victim block

• LRU, random, FIFO, ...
• Write back to lower memory hierarchy if

dirty
• Fetch Data from Lower Memory

Hierarchy
• As a unit of a cache block
• Miss penalty

hit?

 46

What happens on a write? (Write Allocate, write back)

CPU

L1 $

L2 $

miss?

write-back 
(if dirty)

sw tag index offset

fetch (if write allocate)
tag index 0

~

tag index B-1

update in L1update in L1

Performance evaluation
considering cache

 47

Multi-layer caches

 48

• Speed of L1 matches the
processor

• Caches data/code as
many as possible in L2/
L3 to avoid DRAM
accesses

CPU

$

Main Memory

Secondary Storage

Biggest

L1 $

L2 $

L3 $

• If the load/store instruction hits in L1 cache where the hit time is
usually the same as a CPU cycle
• The CPI of this instruction is the base CPI

• If the load/store instruction misses in L1, we need to access L2
• The CPI of this instruction needs to include the cycles of accessing L2

• If the load/store instruction misses in both L1 and L2, we need to go
to lower memory hierarchy (L3 or DRAM)
• The CPI of this instruction needs to include the cycles of accessing L2, L3,

DRAM 

 49

Performance evaluation considering cache

How to evaluate cache performance

 50

• CPIAverage : the average CPI of a memory instruction

• If the problem is asking for average memory access time, transform
the CPI values into/from time by multiplying with CPU cycle time! 

CPIAverage= CPIbase + miss_rateL1*miss_penaltyL1

miss_penaltyL1= CPIaccessing_L2+miss_rateL2*miss_penaltyL2

miss_penaltyL2= CPIaccessing_L3+miss_rateL3*miss_penaltyL3

miss_penaltyL3= CPIaccessing_DRAM+miss_rateDRAM*miss_penaltyDRAM

• Average Memory Access Time (AMAT)  
= Hit Time+ Miss rate* Miss penalty
• Miss penalty = AMAT of the lower memory hierarchy
• AMAT = hit_timeL1+miss_rateL1*AMATL2

• AMATL2 = hit_timeL2+miss_rateL2*AMATDRAM 

 51

Average memory access time

Cause of cache misses

 56

• Compulsory miss
• Cold start miss. First-time access to a block

• Capacity miss
• The working set size of an application is bigger than cache size

• Conflict miss
• Required data replaced by block(s) mapping to the same set
• Similar collision in hash

 57

3Cs of misses

• Consider a 2-way cache with 16 blocks (8 sets), a block size of 16
bytes, and the application repeatedly reading the following memory
addresses:
• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,

0b1100010000

 58

Simulate a 2-way cache

• 8 = 2^3 : 3 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (3 + 4) = 25 bits
• For example: 0b1000 0000 0000 0000 0000 0000 0001 0000

tag

ind
ex

off
se

t

 59

Simulate a 2-way cache
v tag data v tag data

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

1 0b100 compulsory  
miss

hit!
1 0b100

0
1
2
3
4
5
6
7

compulsory 
miss

compulsory 
miss

hit!

hit!

1 0b110

hit!

hit!

hit!

tag index

• Consider a direct mapped (1-way) cache with 16 blocks, a block size
of 16 bytes, and the application repeatedly reading the following
memory addresses:
• 0b1000000000, 0b1000001000, 0b1000010000, 0b1000010100,

0b1100010000

 60

Simulate a direct-mapped cache

• 16 = 2^4 : 4 bits are used for the index
• 16 = 2^4 : 4 bits are used for the byte offset
• The tag is 32 - (4 + 4) = 24 bits
• For example: 0b1000 0000 0000 0000 0000 0000 1000 0000

tag

ind
ex

off
se

t

 61

Simulate a direct-mapped cache
valid tag data

0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100
0b11 0001 0000
0b10 0000 0000
0b10 0000 1000
0b10 0001 0000
0b10 0001 0100

1 0b10 compulsory  
miss

hit!
1 0b10

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

compulsory 
miss

compulsory 
miss

hit!

hit!

1 0b111 0b10

hit!
conflict 

miss

hit!

tag index

Improving 3Cs

 66

• 3Cs and A, B, C of caches
• Compulsory miss

• Increase B: increase miss penalty (more data must be fetched from lower
hierarchy)

• Capacity miss
• Increase C: increase cost, access time, power

• Conflict miss
• Increase A: increase access time and power

• Or modify the memory access pattern of your program!

 68

Improvement of 3Cs

Memory hierarchy and your
code

 69

Demo

 70

#ifndef COL_MAJOR
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }
#else
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j]+b[i][j];
 }
 }
#endif

 73

Demo revisited
for(i = 0; i < ARRAY_SIZE; i++)  
{
 for(j = 0; j < ARRAY_SIZE; j++)
 {
 c[i][j] = a[i][j] + b[i][j];
 }  
}

for(j = 0; j < ARRAY_SIZE; j++)  
{
 for(i = 0; i < ARRAY_SIZE; i++)
 {
 c[i][j] = a[i][j] + b[i][j];
 }  
}

Array_size = 1024, 0.048s  
(5.25X faster)

Array_size = 1024, 0.252s

Array of structures or structure of arrays

 75

Array of objects object of arrays

struct grades
{
 int id;
 double *homework;
 double average;
};

struct grades
{
 int *id;
 double **homework;
 double *average;
};

average of
each

homework

for(i=0;i<homework_items; i++)
{  
gradesheet[total_number_students].homework[i] = 0.0;
 for(j=0;j<total_number_students;j++)
gradesheet[total_number_students].homework[i]
+=gradesheet[j].homework[i];  
 gradesheet[total_number_students].homework[i] /=
(double)total_number_students;
}

for(i = 0;i < homework_items; i++)
{
 gradesheet.homework[i][total_number_students] = 0.0;
 for(j = 0; j <total_number_students;j++)
 {
 gradesheet.homework[i][total_number_students] +=
gradesheet.homework[i][j];
 }
 gradesheet.homework[i][total_number_students] /=
total_number_students;
}

• If you’re designing an in-memory database system, will you be using  
 
 
 

• column-store — stores data tables column by column  
 
10:001,12:002,11:003,22:004;  
Smith:001,Jones:002,Johnson:003,Jones:004;  
Joe:001,Mary:002,Cathy:003,Bob:004;  
40000:001,50000:002,44000:003,55000:004;  

• row-store — stores data tables row by row  
 
001:10,Smith,Joe,40000;  
002:12,Jones,Mary,50000;  
003:11,Johnson,Cathy,44000;  
004:22,Jones,Bob,55000;

 78

Column-store or row-store
RowId EmpId Lastname Firstname Salary

1 10 Smith Joe 40000

2 12 Jones Mary 50000

3 11 Johnson Cathy 44000

4 22 Jones Bob 55000

select Lastname, Firstname from table

• Matrix Multiplication

for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 79

Case study: Matrix Multiplication

Algorithm class tells you it’s O(n3)
If n=512, it takes about 1 sec

How long is it take when n=1024?

• Matrix Multiplication for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 80

Matrix Multiplication

c a b

• If each dimension of your matrix is 1024
• Each row takes 1024*8 bytes = 8KB
• The L1 $ of intel Core i7 is 32KB, 8-way, 64-byte blocked
• You can only hold at most 4 rows/columns of each matrix!
• You need the same row when j increase!

Very likely a miss
if array is large

• Discover the cache miss rate
• valgrind --tool=cachegrind cmd

• cachegrind is a tool profiling the cache performance
• Performance counter

• Intel® Performance Counter Monitor http://www.intel.com/software/pcm/

 81

Block algorithm for matrix multiplication

http://www.intel.com/software/pcm/

 82

Block algorithm for matrix multiplication
for(i = 0; i < ARRAY_SIZE; i++) {
 for(j = 0; j < ARRAY_SIZE; j++) {
 for(k = 0; k < ARRAY_SIZE; k++) {
 c[i][j] += a[i][k]*b[k][j];
 }
 }
}

 for(i = 0; i < ARRAY_SIZE; i+=(ARRAY_SIZE/n)) {
 for(j = 0; j < ARRAY_SIZE; j+=(ARRAY_SIZE/n)) {
 for(k = 0; k < ARRAY_SIZE; k+=(ARRAY_SIZE/n)) {
 for(ii = i; ii < i+(ARRAY_SIZE/n); ii++)
 for(jj = j; jj < j+(ARRAY_SIZE/n); jj++)
 for(kk = k; kk < k+(ARRAY_SIZE/n); kk++)
 c[ii][jj] += a[ii][kk]*b[kk][jj];
 }
 }
 }

c a b

You only need to hold these
sub-matrices in your cache

Other cache optimizations

 85

Split Data & Instruction caches

 86

• Different area of memory
• Different access patterns

• instruction accesses have lots of spatial
locality

• instruction accesses are predictable to the
extent that branches are predictable

• data accesses are less predictable
• Instruction accesses may interfere with

data accesses
• Avoiding structural hazards in the pipeline
• Writes to I-cache are rare

CPU

D-L1 $

L2 $

I-L1 $

DRAM

L3 $

• A small cache that captures
the evicted blocks
• Can be built as fully

associative since it’s small
• Consult when there is a miss
• Athlon has an 8-entry victim

cache
• Reduce the miss penalty of

conflict misses

 88

Victim cache

CPU

L1 $

L2 $

miss?

access tag index offset

Victim $

tag index 0

~

tag index B-1

 89

Characteristic of memory accesses

D[0]

CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {  
 D[i] = rand();  
}

time

time

timeL2 access 
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]

miss

L2 access 
for D[8] - D[15]

D[9]D[10]

 90

Prefetching

D[0]

CPU

L1 $

L2 $

miss

D[1]

for(i = 0;i < 1000000; i++) {  
 D[i] = rand();  
 // prefetch D[i+8] if i % 8 == 0  
}

time

time

timeL2 access  
for D[0] - D[7]

D[2] D[3] D[4] D[5] D[6] D[7] D[8]D[9]D[10]

prefetch

miss

L2 access  
for D[8] - D[15]

prefetch

miss

L2 access  
for D[16] - D[23]

D[11] D[12] D[13] D[14] D[15] D[16]

prefetch

• Identify the access pattern and proactively fetch data/instruction
before the application asks for the data/instruction
• Trigger the cache miss earlier to eliminate the miss when the application

needs the data/instruction
• Hardware prefetch:

• The processor can keep track the distance between misses. If there is a
pattern, fetch miss_data_address+distance for a miss

• Software prefetching
• Load data into $zero
• Using prefetch instructions

 91

Prefetching

• Every write to lower memory will first write to a small SRAM buffer.
• sw does not incur data hazards, but the pipeline has to stall if the write misses
• The write buffer will continue writing data to lower-level memory
• The processor/higher-level memory can response as soon as the data is written to

write buffer.
• Help reduce miss penalty
• Write merge

• Since application has locality, it’s highly possible the evicted data have neighboring
addresses. Write buffer delays the writes and allows these neighboring data to be
grouped together.

 92

Write buffer

