CSE140L: Digital Systems Laboratory

Introduction

Instructor: Pietro Mercati

Slides from Prof. Tajana Simunic Rosing
Welcome to CSE 140L!

- **Instructor:** Pietro Mercati
 - Email: pimercat@eng.ucsd.edu;
 - please put “CSE140L” in the subject line
 - Office Hours:
 - Mon 2-4pm CSE 2109
- **Website:** https://cseweb.ucsd.edu/classes/su16_2/cse140L-a/index.html
 - Homeworks and slides will be here
- **TAs and Tutors**
 - Office hours listed on the class website/Piazza
- **Discussion sessions:** Thu 5-6pm (Only if requested, otherwise is a lab office hour)
- **Grades:** https://tritoned.ucsd.edu/
- **Announcements and online discussion:** https://piazza.com
 - “CSE140L_S216_MERCATI” ➔ SIGN UP SOON !!!
- **Lab:** B250
Course Description

• Prerequisites:
 – CSE 20 or Math 15A, and CSE 30.
 – CSE 140 must be taken concurrently

• Objective:
 – Introduce digital components and system design concepts through hands-on experience in a lab

• Grading:
 – Homeworks (5): #1: 0%, #2,#3,#4: 10%, #5: 20%
 – Final: 50%

• Homeworks:
 – Can be solved individually or in teams of two.
 – Each homework solution should be checked-off with a tutor or a TA before the end of the day on the due date
 – Detailed instructions will be provided on the homework
Textbook and Recommended Readings

• **Recommended textbook:**
 – Contemporary Logic Design by R. Katz & G. Borriello

• Recommended textbook:
 – Digital Design by F. Vahid

• Lecture slides are derived from the slides designed for both books
Demo Overview
Outline

• Transistors
 – How they work
 – How to build basic gates out of transistors
 – How to evaluate delay
Combinational circuit building blocks: Transistors, gates and timing
Switches

- Electronic switches are the basis of binary digital circuits
 - Electrical terminology
 - **Voltage**: Difference in electric potential between two points
 - Analogous to water pressure
 - **Current**: Flow of charged particles
 - Analogous to water flow
 - **Resistance**: Tendency of wire to resist current flow
 - Analogous to water pipe diameter
 - $V = I \times R$ (Ohm’s Law)

“Binary Digital” = all values are either 0 (low voltage) or 1 (high voltage)
The CMOS Switches

- CMOS circuit (Complementary – MOS)
 - Consists of N and PMOS transistors
 - Both N and PMOS are similar to basic switches
 - \(R_p \sim 2R_n \Rightarrow \) PMOS in series is much slower than NMOS

Silicon -- not quite a conductor or insulator: *Semiconductor*

\(1 = \text{high voltage} \)
\(0 = \text{low voltage} \)
MOSFET Dimensions

Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

- L_M: mask length of the gate
- L: actual channel length
- L_D: gate-drain overlap
- Y: typical diffusion length
- W: length of the source and drain diffusion region
CMOS delay: resistance

- **Resistance:**
 - Function of:
 - resistivity r, thickness t: defined by technology
 - Width W, length L: defined by designer
 - Approximate ON transistor with a resistor
 - $R = \frac{r'}{L/W}$
 - L is usually minimum; change only W
CMOS delay: capacitance & timing estimates

- **Capacitor**
 - Stores charge $Q = C \cdot V$ (capacitance C; voltage V)
 - Current: $\frac{dQ}{dt} = C \frac{dV}{dt}$

- **Timing estimate**
 - $\frac{1}{i} = C \frac{dV}{(V/R)} = R \frac{dV}{V}$

- **Delay**: time to go from 50% to 50% of waveform

Source: Prof. Subhashish Mitra
Charge/discharge in CMOS

• Calculate on resistance
• Calculate capacitance of the gates circuit is driving
• Get RC delay & use it as an estimate of circuit delay

\[V_{out} = V_{dd} \left(1 - e^{-\frac{t}{R_p C}} \right) \]

• \(R_p \sim 2R_n \)
Rules for making gates

The Mathematical Method

• Given a logic function
 \[F = f(a, b, c) \]

• Reduce (using DeMorgan) to eliminate inverted operations
 – inverted variables are OK, but not operations (NAND, NOR)

• Form pMOS network by complementing the inputs
 \[F_p = f(\overline{a}, \overline{b}, \overline{c}) \]

• Form the nMOS network by complementing the output
 \[F_n = f(a, b, c) = \overline{F} \]

• Construct \(F_n \) and \(F_p \) using AND/OR series/parallel MOSFET structures
 – series = AND, parallel = OR

• EXAMPLE:
 \[F = \overline{ab} \Rightarrow \]
 \[F_p = \overline{a \ b} = a + b; \quad \text{OR/parallel} \]
 \[F_n = \overline{a b} = ab; \quad \text{AND/series} \]
Another way of making CMOS gates

• Reducing Logic Functions
 - fewest operations ⇒ fewest txs
 - minimized function to eliminate txs
 - Example: \(x \cdot y + x \cdot z + x \cdot v = x \cdot (y + z + v) \)

 | 5 operations: | 3 operations: |
 | 3 AND, 2 OR | 1 AND, 2 OR |
 | # txs = | # txs = |

• Suggested approach to implement a CMOS logic function
 - create nMOS network
 • invert output
 • reduce function, use DeMorgan to eliminate NANDs and NORs
 • implement using series for AND and parallel for OR
 - create pMOS network
 • complement each operation in nMOS network
CMOS Example

- **Construct the function below in CMOS**
 \[F = a + b \cdot (c + d); \] remember AND operations occur before OR

- **Step 1, invert output and find nMOS**
 - nMOS; implement \(a + b \cdot (c + d) \)
 - Group 1: c & d in parallel
 - Group 2: b in series with G1
 - Group 3: a parallel to G2

- **Step 2, complement operations**
 - pMOS
 - Group 1: c & d in series
 - Group 2: b parallel to G1
 - Group 3: a in series with G2
A CMOS design example

- Implement F using CMOS: $F = A^*(B+C)$
What we’ve covered thus far

• Delay estimates
• Transistor design
• Building basic gates from CMOS