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Outline
• SuperScalar
• Dynamic scheduling/Out-of-order execution
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SuperScalar
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Pipeline
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SuperScalar!



SuperScalar
• Improve ILP by widen the pipeline

• The processor can handle more than one instructions in one 
stage

• Instead of fetching one instruction, we fetch multiple instructions!

• CPI = 1/n for an n-issue SS processor in the best case.
add  $t1, $a0, $a1
addi $a1, $a1, -1
add  $t2, $a0, $t1
bne  $a1, $zero, LOOP
add  $t1, $a0, $a1
addi $a1, $a1, -1
add  $t2, $a0, $t1
bne  $a1, $zero, LOOP
2 cycle per loop with perfect branch prediction: CPI = 0.5!
Pipeline takes 4 cycles per loop
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lw   $t1, 0($a0)
addi $a0, $a0, 4
add  $v0, $v0, $t1
bne  $a0, $t0, LOOP
lw   $t1, 0($a0)
addi $a0, $a0, 4
add  $v0, $v0, $t1
bne  $a0, $t0, LOOP

Running compiler optimized code
• We can use compiler optimization to reorder the 

instruction sequence
• Compiler optimization requires no hardware change

3 cycles if the processor predicts branch perfectly, CPI = 0.75
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lw   $t1, 0($a0)
addi $a0, $a0, 4
add  $v0, $v0, $t1
bne  $a0, $t0, LOOP
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Limitations of compiler optimizations
• Compiler can only see/optimize static 

instructions, instructions in the 
compiled binary

• Compiler cannot optimize dynamic 
instructions, the real instruction 
sequence when executing the program
• Compiler cannot re-order 3, 5 or 4,5
• Compiler cannot predict cache misses

• Compiler optimization is constrained 
by false dependencies due to limited 
number of registers (even worse for x86)
• Instructions lw $t1, 0($a0) and addi 

$a0, $a0, 4 do not depend on each other

• Compiler optimizations do not work for 
all architectures
• The code optimization in the previous 

example works for single pipeline, but not for 
superscalar
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Static instructions
LOOP: lw   $t1, 0($a0)
      addi $a0, $a0, 4
      add  $v0, $v0, $t1
      bne  $a0, $t0, LOOP
      lw   $t0, 0($sp)
      lw   $t1, 4($sp)

Dynamic instructions
1: lw   $t1, 0($a0)
2: addi $a0, $a0, 4
3: add  $v0, $v0, $t1
4: bne  $a0, $t0, LOOP
5: lw   $t1, 0($a0)
6: addi $a0, $a0, 4
7: add  $v0, $v0, $t1
8: bne  $a0, $t0, LOOP



Simply superscalar + 
compiler optimization 

is not enough
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Dynamic out-of-order 
execution
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Designing an out-of-order processor
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• The goal is to “reorder/optimize instructions using 
dynamic instructions”
• Needs to fetch multiple instructions at the same time so that we 

have more instructions to schedule
• Needs the help of branch prediction to fetches instructions 

across the branch

• The hardware can schedule the execution of these 
fetched instructions

Schedule Execution Data
Memory

Write 
Back

Instruction
Fetch 

(Fetch many 
instructions)

Instruction
Decode

Branch 
predictor



The instruction window
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• Draw the data dependency graph, put an arrow if an 
instruction depends on the other. 
• RAW (Read after write)

• In theory, instructions without dependencies can be 
executed in parallel or out-of-order

• Instructions with dependencies can never be reordered

Scheduling instructions: based 
on data dependencies

1: lw   $t1, 0($a0)
2: addi $a0, $a0, 4
3: add  $v0, $v0, $t1
4: bne  $a0, $t0, LOOP
5: lw   $t1, 0($a0)
6: addi $a0, $a0, 4
7: add  $v0, $v0, $t1
8: bne  $a0, $t0, LOOP
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False dependencies
• We are still limited by false dependencies
• They are not “true” dependencies because they 

don’t have an arrow in data dependency graph
• WAR (Write After Read): a later instruction overwrites the 

source of an earlier one
• 1 and 2, 3 and 5, 5 and 6

• WAW (Write After Write):  a later instruction overwrites the 
output of an earlier one
• 1 and 5

1: lw   $t1, 0($a0)
2: addi $a0, $a0, 4
3: add  $v0, $v0, $t1
4: bne  $a0, $t0, LOOP
5: lw   $t1, 0($a0)
6: addi $a0, $a0, 4
7: add  $v0, $v0, $t1
8: bne  $a0, $t0, LOOP 20
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If we can transform the code ...
1: lw   $t1, 0($a0)
2: addi $a0, $a0, 4
3: add  $v0, $v0, $t1
4: bne  $a0, $t0, LOOP
5: lw   $t1, 0($a0)
6: addi $a0, $a0, 4
7: add  $v0, $v0, $t1
8: bne  $a0, $t0, LOOP
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1: lw   $t1, 0($a0)
2: addi $a1, $a0, 4
3: add  $v1, $v0, $t1
4: bne  $a1, $t0, LOOP
5: lw   $t2, 0($a1)
6: addi $a2, $a1, 4
7: add  $v2, $v1, $t2
8: bne  $a2, $t0, LOOP
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• We can get rid of the problem if each new output can use a different register!
• Compiler cannot do this because compiler cannot know if the second loop will 

executed or not!



Register renaming
• We can remove false dependencies if we can store 

each new output in a different register 
• Architectural registers: an abstraction of registers 

visible to compilers and programmers
• Like MIPS $0 -- $31

• Physical registers: the internal registers used for 
execution
• Larger number than architectural registers
• Modern processors have 128 physical registers
• Invisible to programmers and compilers

• Maintains a mapping table between “physical” and 
“architectural” registers
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Register renaming
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1: lw   $t1, 0($a0)
2: addi $a0, $a0, 4
3: add  $v0, $v0, $t1
4: bne  $a0, $t0, LOOP
5: lw   $t1, 0($a0)
6: addi $a0, $a0, 4
7: add  $v0, $v0, $t1
8: bne  $a0, $t0, LOOP

cycle $a0 $t0 $t1 $v0
0 p1 p2 p3 p4

1: lw   $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add  $p7 , $p4, $p5
4: bne  $p6 , $p2, LOOP
5: lw   $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add  $p10, $p7, $p8
8: bne  $p9 , $p2, LOOP

1    p1   p2   p5   p4
2    p6   p2   p5   p4
3    p6   p2   p5   p7
4    p6   p2   p5   p7
5    p6   p2   p8   p7
6    p9   p2   p8   p7
7    p9   p2   p8   p10
8    p9   p2   p8   p10

Register map

Original code After renamed
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Simplified OOO pipeline
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Scheduling across branches
• Hardware can schedule instruction across branch 

instructions with the help of branch prediction
• Fetch instructions according to the branch prediction
• However, branch predictor can never be perfect

• Execute instructions across branches
• Speculative execution: execute an instruction before the 

processor know if we need to execute or not
• Execute an instruction all operands are ready (the values of 

depending physical registers are generated)
• Store results in “reorder buffer” before the processor knows if 

the instruction is going to be executed or not.
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Reorder buffer
• An instruction will be given an reorder buffer entry 

number 
• A instruction can “retire”/ “commit” only if all its 

previous instructions finishes.
• If branch mis-predicted, “flush” all instructions with later 

reorder buffer indexes and clear the occupied physical 
registers

• We can implement the reorder buffer by extending 
instruction window or the register map.

27



Simplified OOO pipeline
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Dynamic execution with register naming 
• Register renaming with unlimited physical registers, 

dynamical scheduling with 2-issue pipeline
• Assume that we fetch/decode/renaming/retire 4 

instructions into/from instruction window each cycle
• Assume load needs 2 cycles to execute (one cycle 

address calculation and one cycle memory access)

29

After renamed
1: lw   $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add  $p7 , $p4, $p5
4: bne  $p6 , $p2, LOOP

available in
cycle #1

5: lw   $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add  $p10, $p7, $p8
8: bne  $p9 , $p2, LOOP

available in
cycle #2
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Cannot issue 
because the issue 
width is only 2
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Dynamic execution with register naming 
• Register renaming with unlimited physical registers, 

dynamical scheduling with 2-issue pipeline
• Assume that we fetch/decode/renaming/retire 4 

instructions into/from instruction window each cycle
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1: lw   $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add  $p7 , $p4, $p5
4: bne  $p6 , $p2, LOOP
5: lw   $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add  $p10, $p7, $p8
8: bne  $p9 , $p2, LOOP
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instructions out-
of-order

Execute/issue 2 instructions per cycle, CPI = 0.5



Problems with OOO+Superscalar
• The modern OOO processors have 3-6 issue widths
• Keeping instruction window filled is hard

• Branches are every 4-5 instructions. 
• If the instruction window is 32 instructions the processor has 

to predict 6-8 consecutive branches correctly to keep IW full.

• The ILP within an application is low
• Usually 1-2 per thread
• ILP is even lower is data depends on memory operations (if 

cache misses) or long latency operations

• Demo
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Example: Alpha 21264
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AMD K10 architecture
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3-issue integer pipeline 3-issue floating point pipeline



AMD FX (Bulldozer)

35 4-issue floating point pipeline

4-issue integer 
pipeline



intel Nehalem (1st gen core i7)
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Intel SkyLake architecture
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INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-2

2.1 THE SKYLAKE MICROARCHITECTURE 
The Skylake microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures. 
The basic pipeline functionality of the Skylake microarchitecture is depicted in Figure 2-1. 

The Skylake microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an 
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A 
four-core configuration can be supported similar to the arrangement shown in Figure 2-3.

Figure 2-1.  CPU Core Pipeline Functionality of the Skylake Microarchitecture 
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