
Modern processor
design
Hung-Wei Tseng

Outline
• SuperScalar
• Dynamic scheduling/Out-of-order execution

8

SuperScalar

9

Pipeline

10

SuperScalar!

SuperScalar
• Improve ILP by widen the pipeline

• The processor can handle more than one instructions in one
stage

• Instead of fetching one instruction, we fetch multiple instructions!

• CPI = 1/n for an n-issue SS processor in the best case.
add $t1, $a0, $a1
addi $a1, $a1, -1
add $t2, $a0, $t1
bne $a1, $zero, LOOP
add $t1, $a0, $a1
addi $a1, $a1, -1
add $t2, $a0, $t1
bne $a1, $zero, LOOP
2 cycle per loop with perfect branch prediction: CPI = 0.5!
Pipeline takes 4 cycles per loop

IF

IF

ID

ID

IF

IF

11

EXE

EXE

ID

ID

IF

IF

WB

WB

MEM

MEM

EXE

EXE

ID

ID

WB

WB

WB

WB

MEM

MEM

MEM

EXE

EXE

MEM

ID

ID

IF

IF

WB

WB

MEM

EXE

EXE

MEM

lw $t1, 0($a0)
addi $a0, $a0, 4
add $v0, $v0, $t1
bne $a0, $t0, LOOP
lw $t1, 0($a0)
addi $a0, $a0, 4
add $v0, $v0, $t1
bne $a0, $t0, LOOP

Running compiler optimized code
• We can use compiler optimization to reorder the

instruction sequence
• Compiler optimization requires no hardware change

3 cycles if the processor predicts branch perfectly, CPI = 0.75

IF

IF

ID

ID

IF

IF

12

MEM

ID

ID

MEM

IF

IF

WB

WB

EXE

EXE

ID

ID

IF

IF

EXE

EXE

ID

ID

IF

IF

WB

WBMEM

MEM

EXE

EXE

ID

ID

MEM

ID

ID

MEM

WB

WBMEM

MEM

WB

WB

EXE

EXE

lw $t1, 0($a0)
addi $a0, $a0, 4
add $v0, $v0, $t1
bne $a0, $t0, LOOP

ID

ID

IF

IF

IF

IF

WB

WB

EXE

EXE

IF

IF

WB

WB

MEM

ID

ID

MEM

EXE

EXE

ID

ID

MEM

MEM

Can further improve
performance if we can
reorder this...

Limitations of compiler optimizations
• Compiler can only see/optimize static

instructions, instructions in the
compiled binary

• Compiler cannot optimize dynamic
instructions, the real instruction
sequence when executing the program
• Compiler cannot re-order 3, 5 or 4,5
• Compiler cannot predict cache misses

• Compiler optimization is constrained
by false dependencies due to limited
number of registers (even worse for x86)
• Instructions lw $t1, 0($a0) and addi

$a0, $a0, 4 do not depend on each other

• Compiler optimizations do not work for
all architectures
• The code optimization in the previous

example works for single pipeline, but not for
superscalar

13

Static instructions
LOOP: lw $t1, 0($a0)
 addi $a0, $a0, 4
 add $v0, $v0, $t1
 bne $a0, $t0, LOOP
 lw $t0, 0($sp)
 lw $t1, 4($sp)

Dynamic instructions
1: lw $t1, 0($a0)
2: addi $a0, $a0, 4
3: add $v0, $v0, $t1
4: bne $a0, $t0, LOOP
5: lw $t1, 0($a0)
6: addi $a0, $a0, 4
7: add $v0, $v0, $t1
8: bne $a0, $t0, LOOP

Simply superscalar +
compiler optimization

is not enough

14

Dynamic out-of-order
execution

15

Designing an out-of-order processor

16

• The goal is to “reorder/optimize instructions using
dynamic instructions”
• Needs to fetch multiple instructions at the same time so that we

have more instructions to schedule
• Needs the help of branch prediction to fetches instructions

across the branch

• The hardware can schedule the execution of these
fetched instructions

Schedule Execution Data
Memory

Write
Back

Instruction
Fetch

(Fetch many
instructions)

Instruction
Decode

Branch
predictor

The instruction window

17

A
rb
it
ra
ti
o
n

ALU0

ALU1

insts

Schedule Execute

• Draw the data dependency graph, put an arrow if an
instruction depends on the other.
• RAW (Read after write)

• In theory, instructions without dependencies can be
executed in parallel or out-of-order

• Instructions with dependencies can never be reordered

Scheduling instructions: based
on data dependencies

1: lw $t1, 0($a0)
2: addi $a0, $a0, 4
3: add $v0, $v0, $t1
4: bne $a0, $t0, LOOP
5: lw $t1, 0($a0)
6: addi $a0, $a0, 4
7: add $v0, $v0, $t1
8: bne $a0, $t0, LOOP

18

1

3

2

4

8

5

7

6

False dependencies
• We are still limited by false dependencies
• They are not “true” dependencies because they

don’t have an arrow in data dependency graph
• WAR (Write After Read): a later instruction overwrites the

source of an earlier one
• 1 and 2, 3 and 5, 5 and 6

• WAW (Write After Write): a later instruction overwrites the
output of an earlier one
• 1 and 5

1: lw $t1, 0($a0)
2: addi $a0, $a0, 4
3: add $v0, $v0, $t1
4: bne $a0, $t0, LOOP
5: lw $t1, 0($a0)
6: addi $a0, $a0, 4
7: add $v0, $v0, $t1
8: bne $a0, $t0, LOOP 20

1

3

2

4

8

5

7

6

If we can transform the code ...
1: lw $t1, 0($a0)
2: addi $a0, $a0, 4
3: add $v0, $v0, $t1
4: bne $a0, $t0, LOOP
5: lw $t1, 0($a0)
6: addi $a0, $a0, 4
7: add $v0, $v0, $t1
8: bne $a0, $t0, LOOP

22

1: lw $t1, 0($a0)
2: addi $a1, $a0, 4
3: add $v1, $v0, $t1
4: bne $a1, $t0, LOOP
5: lw $t2, 0($a1)
6: addi $a2, $a1, 4
7: add $v2, $v1, $t2
8: bne $a2, $t0, LOOP

1

3

2

4

8

5

7

6

1

3

2

4

8

5

7

6

• We can get rid of the problem if each new output can use a different register!
• Compiler cannot do this because compiler cannot know if the second loop will

executed or not!

Register renaming
• We can remove false dependencies if we can store

each new output in a different register
• Architectural registers: an abstraction of registers

visible to compilers and programmers
• Like MIPS $0 -- $31

• Physical registers: the internal registers used for
execution
• Larger number than architectural registers
• Modern processors have 128 physical registers
• Invisible to programmers and compilers

• Maintains a mapping table between “physical” and
“architectural” registers

23

Register renaming

24

1: lw $t1, 0($a0)
2: addi $a0, $a0, 4
3: add $v0, $v0, $t1
4: bne $a0, $t0, LOOP
5: lw $t1, 0($a0)
6: addi $a0, $a0, 4
7: add $v0, $v0, $t1
8: bne $a0, $t0, LOOP

cycle $a0 $t0 $t1 $v0
0 p1 p2 p3 p4

1: lw $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add $p7 , $p4, $p5
4: bne $p6 , $p2, LOOP
5: lw $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add $p10, $p7, $p8
8: bne $p9 , $p2, LOOP

1 p1 p2 p5 p4
2 p6 p2 p5 p4
3 p6 p2 p5 p7
4 p6 p2 p5 p7
5 p6 p2 p8 p7
6 p9 p2 p8 p7
7 p9 p2 p8 p10
8 p9 p2 p8 p10

Register map

Original code After renamed

1

3

2

4

8

5

7

6

1

3

2

4

8

5

7

6

Simplified OOO pipeline

25

Register
renaming

logic
Schedule Execution

Units
Data

Memory
Write
Back

Instruction
Fetch

Instruction
Decode

Branch
predictor

Scheduling across branches
• Hardware can schedule instruction across branch

instructions with the help of branch prediction
• Fetch instructions according to the branch prediction
• However, branch predictor can never be perfect

• Execute instructions across branches
• Speculative execution: execute an instruction before the

processor know if we need to execute or not
• Execute an instruction all operands are ready (the values of

depending physical registers are generated)
• Store results in “reorder buffer” before the processor knows if

the instruction is going to be executed or not.

26

Reorder buffer
• An instruction will be given an reorder buffer entry

number
• A instruction can “retire”/ “commit” only if all its

previous instructions finishes.
• If branch mis-predicted, “flush” all instructions with later

reorder buffer indexes and clear the occupied physical
registers

• We can implement the reorder buffer by extending
instruction window or the register map.

27

Simplified OOO pipeline

28

Register
renaming

logic
Schedule Execution

Units
Data

Memory
Reorder
Buffer/
Commit

Instruction
Fetch

Instruction
Decode

Branch
predictor

Dynamic execution with register naming
• Register renaming with unlimited physical registers,

dynamical scheduling with 2-issue pipeline
• Assume that we fetch/decode/renaming/retire 4

instructions into/from instruction window each cycle
• Assume load needs 2 cycles to execute (one cycle

address calculation and one cycle memory access)

29

After renamed
1: lw $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add $p7 , $p4, $p5
4: bne $p6 , $p2, LOOP

available in
cycle #1

5: lw $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add $p10, $p7, $p8
8: bne $p9 , $p2, LOOP

available in
cycle #2

1

3

2

4

8

5

7

cycle #1

cycle #2

cycle #3

cycle #4

Cannot issue
because the issue
width is only 2

6

4 and 5 are
issues before 3

Dynamic execution with register naming
• Register renaming with unlimited physical registers,

dynamical scheduling with 2-issue pipeline
• Assume that we fetch/decode/renaming/retire 4

instructions into/from instruction window each cycle

30

1: lw $p5 , 0($p1)
2: addi $p6 , $p1, 4
3: add $p7 , $p4, $p5
4: bne $p6 , $p2, LOOP
5: lw $p8 , 0($p6)
6: addi $p9 , $p6, 4
7: add $p10, $p7, $p8
8: bne $p9 , $p2, LOOP

IF

IF

IF

IF

EXE

EXE

Sch

Sch

Sch

Sch

Sch

Sch

Sch

Sch

Sch

Sch

Ren

Ren

Ren

Ren

ID

ID

ID

ID

IF

IF

IF

IF

Ren

Ren

Ren

Ren

ID

ID

ID

ID

EXE

Sch

MEM

C

EXE

Sch

Sch

Sch

C

C

EXE

C

Sch

Sch

MEM

EXE

C

C

C

C

EXE

EXE

C

C

Execute these
instructions out-
of-order

Execute/issue 2 instructions per cycle, CPI = 0.5

Problems with OOO+Superscalar
• The modern OOO processors have 3-6 issue widths
• Keeping instruction window filled is hard

• Branches are every 4-5 instructions.
• If the instruction window is 32 instructions the processor has

to predict 6-8 consecutive branches correctly to keep IW full.

• The ILP within an application is low
• Usually 1-2 per thread
• ILP is even lower is data depends on memory operations (if

cache misses) or long latency operations

• Demo

32

Example: Alpha 21264

33

Instruction
Cache

Branch
predictor

Instruction
prefetcher

Register
renaming

logic
Issue
queue

Register
file

Execute
units

Data
cache

fetch slot rename issue register
read execute memory

AMD K10 architecture

34

3-issue integer pipeline 3-issue floating point pipeline

AMD FX (Bulldozer)

35 4-issue floating point pipeline

4-issue integer
pipeline

intel Nehalem (1st gen core i7)

36

3-issue integer
pipeline

3-issue floating point
pipeline

3-issue memory
pipeline

Intel SkyLake architecture

37

INTEL® 64 AND IA-32 PROCESSOR ARCHITECTURES

2-2

2.1 THE SKYLAKE MICROARCHITECTURE
The Skylake microarchitecture builds on the successes of the Haswell and Broadwell microarchitectures.
The basic pipeline functionality of the Skylake microarchitecture is depicted in Figure 2-1.

The Skylake microarchitecture offers the following enhancements:
• Larger internal buffers to enable deeper OOO execution and higher cache bandwidth.
• Improved front end throughput.
• Improved branch predictor.
• Improved divider throughput and latency.
• Lower power consumption.
• Improved SMT performance with Hyper-Threading Technology.
• Balanced floating-point ADD, MUL, FMA throughput and latency.

The microarchitecture supports flexible integration of multiple processor cores with a shared uncore sub-
system consisting of a number of components including a ring interconnect to multiple slices of L3 (an
off-die L4 is optional), processor graphics, integrated memory controller, interconnect fabrics, etc. A
four-core configuration can be supported similar to the arrangement shown in Figure 2-3.

Figure 2-1. CPU Core Pipeline Functionality of the Skylake Microarchitecture

32K L1 Instruction
Cache

MSROM Decoded Icache
(DSB)

Legacy Decode
Pipeline

Instruction Decode Queue (IDQ,, or micro-op queue)

Allocate/Rename/Retire/MoveElimination/ZeroIdiom

32K L1 Data Cache

256K L2 Cache
(Unified)

Int ALU,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Divide,

Branch2

Port 2
LD/STA

Scheduler

BPU

Port 0

Int ALU,
Fast LEA,
Vec FMA,
Vec MUL,
Vec Add,
Vec ALU,
Vec Shft,
Int MUL,
Slow LEA

Int ALU,
Fast LEA,
Vec SHUF,
Vec ALU,

CVT

Int ALU,
Int Shft,
Branch1,

Port 3
LD/STA

Port 4
STD

Port 7
STA

Port 1 Port 5 Port 6

5 uops/cycle4 uops/cycle
6 uops/cycle

4-issue integer pipeline 4-issue memory pipeline

