CSE141L: Building a microprocessor

Hung-Wei Tseng,
Brian Tsui and Shima Salimi Tari
You will design and implement a microprocessor!
Goals

- Practice what you will learn in CSE141
- Extend what you will learn in CSE141
 - Understand deeply how a processor works
 - See architecture play itself out in a real design
- Learn Verilog
- Get experience working on a large-scale project
- Have fun~~~
Course content

- You will implement a pipeline MIPS processor in Verilog using 5 weeks
 - It will be able to run simple but real programs compiled using gcc
 - It should be able to do simple I/O
- Make it your own processor
 - We will give you some code pieces
 - You have design the rest
 - We will give you the specifications for some others
 - You will invent, design, and implement some of your own
Course format

• Five labs
 • Due on every Thursday
• Lectures (only on Wednesdays in the future)
 • Verilog coding
 • Discussing current or upcoming labs
 • Like group office hours
• No final exam, but have a short celebration on 9/5 6p
Warning!

• The course is a lot of work
 • Don’t let the 2 units fool you

• Don’t fall behind
 • The labs build on each other
 • Hard to catch if you fall behind

• Don’t wait till the last minute
 • It’s called hardware for a good reason
 • The tools are complicated, buggy in some sense...
 • Your code will be buggy, too...
Lab 1: Familiar with the tools

• Two tutorials
 • Building projects in Quartus
 • Entering and compiling Verilog
 • Simulation using ModelSim
 • Measuring the performance of your design

• Start now!

• Due: this Thursday
Lab 2: Datapath elements

• Implementing the datapath elements required for a subset of MIPS instructions
• We will give you the design and some other key components
• You will implement the design
• Due 8/14
Lab 3: Lights of life...

• Add control path to Lab 2
• Test your simple processor
• Execute simple programs
• Due on 8/21
Lab 4: It lives!

- Add missing pieces of MIPS
- You know how to have a working processor!
- Due 8/28
Lab 5: Let it live better!

- Pipeline your processor
- Measure the performance
- Due 9/4
Lab 6: Make it awesome!

- Optional
- You can implement any other fancy features in your processor to get an A+
 - Cache
 - Dual-core
 - Branch predictor
 - Speculation
 - Dynamic execution
 - and etc...
Lab space and software

- We will use Altera tools for development (Quartus II)
 - Verilog editing
 - Design analysis
- We will use ModemSim for simulation
 - Simulation
 - Debugging
- Tools are huge pains
- The labs in the CSE basement have the tools installed
 - CSE B250-B270
- They are also available for free
Do the work

• Lab 1 should be done independently
• Lab 2-5 should be in group of 2 or 3
 • Choose your group carefully
 • You cannot merge groups
 • Splitting up is allowed (but not encouraged)
 • Schedule an interview with TA (or Hung-Wei) before Thursday 7pm every week when you’re done with the lab assignment
• We’re interviewing with the whole group
• No written report
Grading

• Do a reasonable job on the labs (at least a C)
• Delivering a working pipelined processor by the deadline (A)
• Delivering a working pipelined processor with fancy features (A+)
Staff

- Instructor: Hung-Wei Tseng
 - Lectures: W 5p-, WLH 2005
 - Office hours: ThF 11a-12p @ CSE 3217
 - Lab hours: W 6p-9p @ CSE B250-B270 or by appointment

- TA: Brian Tsui
 - Lab hours: M 5p-7p, Th 4p-7p, F 3p-6p @ CSE B250-B270

- TA: Shima Salimi Tari
 - Lab hours:
 T 4p-7p, Th 9a-11a/5:30p-6:30p, F 1p-3p @ CSE B250-B270

- Check the calendar on our website
Course resources

- Course webpage:
 http://cseweb.ucsd.edu/classes/su14/cse141L-a/

- Discussion board:
 https://csemoodle.ucsd.edu/course/view.php?id=264