

1 Error Correction and Detection

A variety of factors such as faulty components and inadequate design tolerances can result in errors appearing in the information being processed by a computer. Such errors frequently occur in information transmission between two relatively distant points.

One of the simplest and most widely used techniques for error control is using a single parity bit C_0. This parity bit is appended to an n bit input word $X = (X_0X_1...X_{n-1})$ to form an $(n+1)$ bit word $X^* = (X_0X_1...X_{n-1}C_0)$. The value assigned to bit C_0 makes the total number of bits in X^* even (if we are using even parity) or odd (in the case of odd parity). Thus, at the receiving end, an error can be detected by taking an exclusive-or of all the bits received (X^*).

Note that this simple technique of error control allows only detection of an error. It is not possible to determine the bit in error (or the position of the error). Hence, it is not possible to correct the error at the receiving end. This leads to retransmission of the information. In addition, this parity only provides single error detection (or in fact, an odd number of errors can be detected). It does not detect multiple errors (even in number).

The parity-checking concept can be easily extended to detection of multiple errors, or to the location of single or multiple errors. These goals can be achieved by providing additional parity bits, each of which check the parity of a subset of the bits in X^*. For example, if we can deduce (from the parity bits) that bit X_i is in error, then the error can be corrected by simply complementing that bit, thus proving single error correction. Let c be the number of parity bits required to achieve single error correction with n-bit data words. Clearly, the check bits must be able to distinguish between $(n+c)$ possible error location and the single error-free case. Hence,

$$2^c \geq n + c + 1$$

It can be proved that this code is Single Error Correcting Double Error Detecting (SECDED) code. This is also known as Hamming Code.

The key question that remains to be answered is: How to generate the value of c parity bits that are appended to $X = (x_0x_1...x_{n-1})$ to obtain X^*? Also, how to obtain the location of error from X^*? The process is illustrated in the following example:

Let $n = 4$. Then, $c = 3$ (since, $2^3 \geq 4 + 3 + 1$). Let $M = (m_0m_1m_2m_3)$ be the message bits and let the three parity bits be $(p_0p_1p_2)$. Organize the bits as follows:

<table>
<thead>
<tr>
<th>POSITION</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIT</td>
<td>m_0</td>
<td>m_1</td>
<td>m_2</td>
<td>p_0</td>
<td>m_3</td>
<td>p_1</td>
<td>p_2</td>
</tr>
</tbody>
</table>
Then, the check bits \((p_0 p_1 p_2)\) can be computed as follows:

\[
p_2 = m_3 \oplus m_2 \oplus m_0
\]

\[
p_1 = m_3 \oplus m_1 \oplus m_0
\]

\[
p_0 = m_2 \oplus m_1 \oplus m_0
\]

Note that one change in data bits produces at least two changes in check bits. Similarly, two changes in data bits produce at least one change in check bits. Hence, the minimum distance between two valid code words is three. (Recall that the distance between two words is equal to the number of bits that need to be flipped to obtain one number from other. For example, the distance between 0110 and 0101 is 2.) As a result, it is a single-error-correcting code.

The position of the single error can be detected using vector \((c_0 c_1 c_2) \) derived as follows:

\[
c_2 = p_2 \oplus m_3 \oplus m_2 \oplus m_0
\]

\[
c_1 = p_1 \oplus m_3 \oplus m_1 \oplus m_0
\]

\[
c_0 = p_0 \oplus m_2 \oplus m_1 \oplus m_0
\]

Thus, if \(c_0 = c_1 = c_2 = 0 \), then there is no single error.

The general technique to obtain these equation is described as follows:

1. Given \(n \) (the number of bits in the message), compute \(c \) using \(2^c \geq n + c + 1 \). Let \((n + c) \) be the total number of bits. Label the position of bits from 1 through \((n + c) \) from right to left. For example, for \(n = 4 \), we get \(c = 3 \). Hence, we label these 7 bit positions from 1 through 7 (from right to left) as follows:

\[
\text{POSITION} \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1
\]

2. Position the \(c \) parity bits in the locations marked with a number that is a power of 2. Place the message bits in other positions.

Hence, our example becomes as follows:

\[
\text{POSITION} \quad 7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 2 \quad 1
\]

\[
\text{BIT} \quad m_0 \quad m_1 \quad m_2 \quad p_0 \quad m_3 \quad p_1 \quad p_2
\]

3. To find the equation for the parity bit in position \(2^i \), do the following:
- Construct the sequence of numbers 0 through \((n + c)\) in binary.
 Hence, for our example, it is as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>

- The equation for parity bit in position \(2^i\) is the *exclusive-or* \((\oplus)\) of the bits in positions \(j\) (except for \(j = 2^i\)) such that the \(i\)th bit in the binary code for \(j\) (in the table created in the previous step) is equal to 1.
 For example, for the parity bit \(p_2\), the position = 1. Hence, \(2^i = 1 \Rightarrow i = 0\). From the table created in the previous step, the 0th bit in the binary code is 1 for numbers \((1, 3, 5, 7)\). Hence, the equation for \(p_2\) is

\[
p_2 = m_3 \oplus m_2 \oplus m_0
\]

Note that, we do not use the bit in position 1 since \(2^i = 1\).