Lecture 10:
Transport Layer Protocols

CSE 123: Computer Networks
Chris Kanich

Project 2 out; Midterm Monday

Lecture 10 Overview

- Process naming/demultiplexing
- User Datagram Protocol (UDP)
- Transport Control Protocol (TCP)
 - Three-way handshake
 - Flow control

Transport Layer

Application Layer
HTTP
TCP
Network Layer
Link Layer
Naming Processes/Services

- Process here is an abstract term for your Web browser (HTTP), Email servers (SMTP), hostname translation (DNS)
- How do we identify for remote communication?
 - Process id or memory address are OS-specific and transient
- So TCP and UDP use Ports
 - 16-bit integers representing mailboxes that processes “rent”
 - Identify process uniquely as (IP address, protocol, port)

Picking Port Numbers

- We still have the problem of allocating port numbers
 - What port should a Web server use on host X?
 - To what port should you send to contact that Web server?
- Servers typically bind to well-known port numbers
 - e.g., HTTP 80, SMTP 25, DNS 53, … look in /etc/services
 - Ports below 1024 traditionally reserved for well-known services
- Clients use OS-assigned temporary (ephemeral) ports
 - Above 1024, recycled by OS when client finished

User Datagram Protocol (UDP)

- Provides unreliable message delivery between processes
 - Source port filled in by OS as message is sent
 - Destination port identifies UDP delivery queue at endpoint
- Connectionless (no state about who talks to whom)
UDP Delivery

- Packets arrive
- Ports
- Message Queues
- DeMux

UDP Checksum

- UDP includes optional protection against errors
 - Checksum intended as an end-to-end check on delivery
 - So it covers data, UDP header, and IP pseudoheader

Applications for UDP

- Streaming media
- DNS (Domain Name Service)
- NTP (Network Time Protocol)

Why is UDP appropriate for these?
Transmission Control Protocol

- Reliable bi-directional bytestream between processes
 - Uses a sliding window protocol for efficient transfer
- Connection-oriented
 - Conversation between two endpoints with beginning and end
- Flow control
 - Prevents sender from over-running receiver buffers
- Congestion control (next class)
 - Prevents sender from over-running network capacity

TCP Delivery

TCP Header Format

- Ports plus IP addresses identify a connection (4-tuple)
TCP Header Format

- Sequence, Ack numbers used for the sliding window
- How big a window? Flow control/congestion control determine

Flags may be ACK, SYN, FIN, URG, PSH, RST

Connection Establishment

- Both sender and receiver must be ready before we start to transfer the data
 - Sender and receiver need to agree on a set of parameters
 - Most important: sequence number space in each direction
 - Lots of other parameters: e.g., the Maximum Segment Size

- Handshake protocols: setup state between two oblivious endpoints
 - Didn’t need it earlier because link had only two end points
 - Need to deal with delayed and reordered packets
Two-way handshake?

Active participant (client) Passive participant (server)

SYN, SequenceNum = x
SYN, SequenceNum = y

What's wrong here?

Two-way handshake?

Active participant (client) Passive participant (server)

Old SYN, SequenceNum = x
New SYN, SequenceNum = y

Delayed old SYN
Rejected

+data

Three-Way Handshake

• Opens both directions for transfer

Active participant (client) Passive participant (server)

SYN, SequenceNum = x
SYN + ACK, SequenceNum = y
ACK, Acknowledgment = y + 1

+data
Some Comments

- We could abbreviate this setup, but it was chosen to be robust, especially against delayed duplicates
 - Three-way handshake from Tomlinson 1975
- Choice of changing initial sequence numbers (ISNs) minimizes the chance of hosts that crash getting confused by a previous incarnation of a connection
- How to choose ISNs?
 - Maximize period between reuse
 - Minimize ability to guess (why?)

TCP State Transitions

Again, with States
Connection Teardown

- Orderly release by sender and receiver when done
 - Delivers all pending data and "hangs up"
- Cleans up state in sender and receiver
- TCP provides a "symmetric" close
 - Both sides shutdown independently

TCP Connection Teardown

The TIME_WAIT State

- We wait 2^MSL (maximum segment lifetime of 60 seconds) before completing the close
 - Why?
- ACK might have been lost and so FIN will be resent
 - Could interfere with a subsequent connection
- Real life: Abortive close
 - Don't wait for 2^MSL, simply send Reset packet (RST)
 - Why?
Flow Control

- Sender must transmit data no faster than it can be consumed by the receiver
 - Receiver might be a slow machine
 - App might consume data slowly
- TCP adjusts the size of the sliding window
 - This is the purpose of the Advertised Window field

TCP Header Format

- Advertised window is used for flow control

```
  0  4  10  16  22  28
  |   |   |   |   |   |
  | SrcPort| DelPort|
  |       |       |
  |       |       |
  | Acknowledgment| SequenceNum|
  |       |       |
  | HdrLen| 0| Flags|
  |       |   | AdvertisedWindow|
  |       |   |       |
  | Checksum| UrgPtr|
  |       |   |       |
  | Options (variable)| Data|
  |       |   |       |
```

Sender and Receiver Buffering

- Sending application
 - LastByteWritten
 - TCP
 - LastByteSent
 - LastByteAcked
- Receiving application
 - LastByteRead
 - TCP
 - NextByteExpected
 - LastByteRcvd

- = available buffer
- = buffer in use
Window-Size Example

Receiver has buffer of size 4 and application doesn’t read

Example – Buffer at Sender

Lots of Icky Details

- Window probes
- Silly Window Syndrome
- Nagle’s algorithm
- PAWS
- Etc...

- Steven’s books “TCP/IP Illustrated (vol 1,2)” is a great source of information on this
TCP applications

- HTTP/WWW
- FTP
- SMTP, POP, IMAP (E-mail)

Why is TCP well suited to these applications?

Summary

- Transport layer provides demultiplexing
- Different protocols provide various services
 - UDP provides unreliable datagram delivery
 - TCP delivers reliable, in-order byte streams
- Connection setup/teardown
- Flow control
 - Adjust sliding window to manage receiver buffer

For next time...

- Read Ch 6.3-4 in P&D
- Can still turn in Project 1 for next few days
 - One letter grade penalty per day