Lecture 1: Course Introduction

CSE 123: Computer Networks
Chris Kanich

Project 1 released tomorrow!

Lecture 1 Overview

- Class overview
 - Expected outcomes
 - Structure of the course
 - Policies and procedures

- A brief overview of Computer Networking
 - High-level concepts
 - An end-to-end example

Personnel

- Instructor: Chris Kanich
 - Office hours: Monday & Wednesday 2pm-3pm or by appt.
 - EBU3B 2106 (if not there, try 3140)

- TA: Neha Chachra
 - Discussion: Monday 2:25pm in Pepper Canyon 122
 - Office hours: 1pm-2pm Tuesday & Thursday
 - Responsible for project grading
Prerequisites

- CSE120
 - I will approve enrollment for students who have not taken it,
 - But, several parts of the course will be especially challenging
 - You are responsible for doing the extra reading on your own

- Programming experience
 - We will be assigning programming projects in C/C++
 - This course will not teach you C. The TA will help, but you need to learn it on your own if you don’t already know it.

Expected Outcomes

- This course will teach you the fundamentals of computer networks:
 - Layering, signaling, framing, MAC, switching, routing, naming, internetworking, congestion control, router design, etc.

- This course will not teach you signals and coding
 - Take an EE course to learn about modulation, encoding, etc. on different hardware technologies

- Similarly, we will not cover Internet apps/services
 - CSE124 covers application layer protocols, Web, etc.
 - You will be able to pick this up on your own with Google

CSE 123 Class Overview

- Course material taught through class lectures, textbook readings, and discussion sections

- Course assignments are
 - Homework questions (based on lecture)
 - Two substantial programming projects

- Discussion sections are a forum for asking questions
 - Lecture material and homework
 - Additional networking topics

- Discussion board (http://www.piazza.com)
 - The place to ask questions about lecture, projects, etc.
 - Private or overly specific questions can be asked via email to ckanich@cs.ucsd.edu
Textbook

- This really actually is a **better book** than the 4th edition.
 - Reading mappings for the 4th edition available upon request.

Quizzes

- Think of these as mini-midterms to check your understanding and prepare for the midterm & final
- Format
 - Two quizzes throughout the session
 - One problem
 - First 20 minutes of class
 - Week 2 & Week 4
 - Specific dates will be announced 2 days in advance

Projects

- There will be two programming projects
 - You will have ~2 weeks to complete each of them
 - The first will be assigned TOMORROW

- The projects must be completed in C/C++
 - We will prove skeleton code for you to use
 - Your job is to fill in the interesting/hard parts
 - The TA will be available to help with coding

- The projects are INDIVIDUAL assignments
 - All code must be your own
 - OK to discuss design ideas, NOT OK to share/look at code
Labs

- We will use the uAPE (B230) lab in the basement of the CSE/EBU3B building
 - Linux running on Intel machines
- You can also use your home machine
 - The project source will work on Windows/OS X (with caveats)
 - Graders will test on uAPE machines
 - Be sure to test your projects there as well

Exams

- Midterm
 - Thursday July 14th
 - Covers first half of class
- Final
 - Friday, July 29th 8 AM – 11 AM (Sorry!)
 - Covers second half of class + selected material from first part
 - I will be explicit about the material covered
 - No makeup exams, early exams
 - If you have to ask, assume the answer will be no.
- Closed book with crib sheet
 - You can bring one double-sided 8.5x11” page of notes to each exam to assist you in answering the questions
 - Exams will require you to apply material, not regurgitate it

Grading

- Quizzes: 10%
 - Think of these as mini-midterms to check your understanding and prepare for the midterm & final
 - In class, first 30 minutes, weeks 2&4
- Midterm: 20%
 - In class, Thursday July 14th
- Final: 30%
 - Material from second half of class will be twice as common as first half
- Projects: 40%
 - Each project is 20% of your final grade
How Not To Pass CSE 123

- Do not come to lecture
 - It's nice out, class is early, the slides are online, and the material is in the book anyway
 - Lecture material is the basis for exams and directly relates to the projects
 - Besides, the professor thinks he's funny
- Do not prepare for the quizzes
 - It's only 10% of the grade
 - Excellent practice for the exams, and some quiz problems are exercises for helping with the project
 - 10% is actually a significant fraction of your grade (difference between an A and a B)

How Not To Pass (2)

- Do not ask questions
 - Chris is scary, I don't want to embarrass myself
 - Asking questions is the best way to clarify lecture material at the time it is being presented
 - Office hours and email will help with homeworks, projects
 - If your question is reasonable, we will work with you until you understand the answer.
- Wait until the last couple of days to start a project
 - We'll have to do the crunch anyways, why do it early?
 - The projects cannot be done in the last couple of days
 - Repeat: The projects cannot be done in the last couple of days

How Not To Pass (3)

- Do not use piazza
 - All questions answered ASAP (ask people from Spring 127)
 - Helping other students understand the material is encouraged and helps incredibly with solidifying one's own understanding
 - If used, Piazza will be a great study guide by end of session
Class Web Page

http://cseweb.ucsd.edu/classes/su11/cse123-a/
http://www.piazza.com – search for UCSD, then 123

- Serves many roles…
 - Course syllabus and schedule (updated as quarter progresses)
 - Lecture slides
 - Announcements
 - Project information
 - Student-instructor and student-student discussion

Questions

- Before we start the material, any questions about the class structure, contents, etc.?
A “Simple” Task

- Send information from one computer to another
 - Endpoints are called **hosts**
 - Could be computer, iPod, cell phone, etc.
 - The plumbing is called a **link**
 - We don’t care what the physical technology is: Ethernet, wireless, cellular, etc.

Measures of success

- How fast?
 - **Bandwidth** measured in bits per second
 - Often talk about KBps or Mbps – Bytes vs bits
- How long was the wait?
 - **Delay** (one-way or round trip) measured in seconds
- How efficiently?
 - **Overhead** measured in bits or seconds or cycles or...
- Any mistakes?
 - **Error rate** measured in terms of probability of flipped bit

How long to send a message?

- Transmit time \(T = \frac{M}{R} + D \)
 - 10 Mbps Ethernet LAN (\(M=1KB \))
 - \(\frac{M}{R}=1\text{ms}, \ D=5\text{us} \)
 - 155 Mbps cross country ATM link (\(M=1KB \))
 - \(\frac{M}{R}=50\text{us}, \ D \approx 40-100\text{ms} \)
- Where are the bits in the mean time?
 - In transit inside the network
- \(R'D \) is called the **bandwidth delay product**
 - How many bits can be “stored” be stored in transit
 - Colloquially, we say “fill the pipe”
Is Not Really So Simple

Layering: A Modular Approach

- **Sub-divide the problem**
 - Each layer relies on services from layer below
 - Each layer exports services to layer above

- **Interface between layers defines interaction**
 - Hides implementation details
 - Layers can change without disturbing other layers

- **Interface among peers in a layer is a protocol**
 - If peers speak same protocol, they can interoperate

Protocol Standardization

- Communicating hosts speaking the same protocol
 - Standardization to enable multiple implementations
 - Or, the same folks have to write all the software

- **Internet Engineering Task Force**
 - Based on working groups that focus on specific issues
 - Produces “Request For Comments” (RFCs)
 - Rough consensus and running code
 - After enough time passes, promoted to Internet Standards

- Other standards bodies exist
 - ISO, ITU, IEEE, etc.
Physical layer

- 2.4GHz Radio
- DS/FH Radio (1-11Mbps)
- 802.11b Wireless Access Point
- Cat5 Cable (4 wires)
- 100Base TX Ethernet (100Mbps)
- Ethernet switch/router
- 62.5/125um 850nm MMF
- 1000BaseSX Ethernet (1000Mbps)
- To campus backbone

Link Layer (e.g. Ethernet)

- Break message into frames
- Media Access Control (MAC)
 - Can I send now? Can I send now?
- Send frame

Connecting links

- Routers/Switches: moves bits between links
 - Circuit switching: guaranteed channel for a session (Telephone system)
 - Packet switching: statistical multiplexing of independent pieces of data (Internet)
Putting this all together

- ROUGHLY, what happens when I click on a Web page from UCSD?

My computer \(\rightarrow \) \text{www.google.com} \(\rightarrow \) Internet

Web request (HTTP)

- Turn click into HTTP request

```
GET http://www.google.com/ HTTP/1.1
Host: www.google.com
Connection:keep-alive
```

Name resolution (DNS)

- Where is www.google.com?

My computer \((132.239.9.64) \) \(\rightarrow \) \text{Local DNS server (132.239.51.18)} \(\rightarrow \) What's the address for www.google.com \(\rightarrow \) Oh, you can find it at 66.102.7.104
Data transport (TCP)

- Break message into packets (TCP segments)
- Should be delivered reliably & in-order

GET http://www.google.com HTTP/1.1
Host: www.google.com
Connection: keep-alive

Global Network Addressing

- Address each packet so it can traverse network and arrive at host

Resource Allocation: Queues

- Sharing access to limited resources
 - E.g., a link with fixed service rate
 - Simplest case: first-in-first out queue
 - Queue/serve packets in the order they arrive
 - Drop packets when the queue is full
- Anybody hear of “Network Neutrality”?
For Next Class...

- Browse the course web
 - http://cseweb.ucsd.edu/classes/su11/cse123-a/
 - http://www.piazza.com

- Read Chapter 1 and start Chapter 2 (up to 2.2)

- Drop now or plan to stick it out!
 - Last day to drop w/o a W is July 8th aka next Friday
 - Come see me if you are not yet officially enrolled

Prepare for an AWESOME FUN MONTH OF AWESOME