6.6

1. \[\binom{n}{0} = \frac{n!}{0!(n-0)!} = 1 \]

9. \[\binom{6}{4} = \frac{5}{4} + \frac{5}{3} = 5 + 10 = 15 \]
 \[\binom{6}{5} = \frac{5}{5} + \frac{5}{4} = 1 + 5 = 6 \]

12. \[\binom{n+3}{r} = \binom{n+2}{r-1} + \binom{n+2}{r} \]
 \[= \binom{n+1}{r-2} + 2\binom{n+1}{r-1} + \binom{n+1}{r} \]
 \[= \binom{n}{r-3} + \binom{n}{r-2} + 2\binom{n}{r-2} + \binom{n}{r-1} + \binom{n}{r} \]
 \[= \binom{n}{r-3} + 3\binom{n}{r-2} + 3\binom{n}{r-1} + \binom{n}{r} \]

19. \[\binom{2n}{n} = \binom{n+n}{n} = \binom{n}{0} + \binom{n}{1}\binom{n}{n-1} + \cdots + \binom{n}{n-1}\binom{n}{1} + \binom{n}{n} \]
 \[= \binom{n}{0} + \binom{n}{1}\binom{n}{1} + \cdots + \binom{n}{n-1}\binom{n}{n-1} + \binom{n}{n} \]
 \[= \binom{n}{0}^2 + \binom{n}{1}^2 + \cdots + \binom{n}{n-1}^2 + \binom{n}{n}^2. \]

- **Claim:** \(\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n} = 2^n. \)
 Proof: One way to think of \(\binom{n}{k} \) is to imagine counting the number of ways to get exactly \(k \) heads in a series of \(n \) tosses of a coin. There are \(k \) positions in the series to be chosen for the heads, and the rest must be tails, so there are \(\binom{n}{k} \) different ways to select the positions for the heads. Note that no two choices of \(k \) can result in the same sequence of coin tosses. If we then add up over all choices of \(k \), we correctly count all possible sequences of \(n \) coin tosses, which is exactly \(2^n \).

- **Claim:** \(\binom{m}{0}\binom{n}{r} + \binom{m}{1}\binom{n}{r-1} + \cdots + \binom{m}{r-1}\binom{n}{1} + \binom{m}{r}\binom{n}{0} = \binom{m+n}{r} \).
 Proof: Imagine that we have two disjoint sets: \(A \) of size \(m \) and \(B \) of size \(n \), and we wish to select \(r \) elements from \(A \cup B \) (where \(r \leq m \) and \(r \leq n \)). Clearly, there are \(\binom{m+n}{r} \) ways to do this. We can also count this by first choosing a number \(k \) of elements to pick from set \(A \), which then forces \(r-k \) elements to be chosen from set \(B \). Since no two choices for \(k \) can result in the same final selection, we can use the addition rule to add up the counts from all possible choices of \(k \). This results in the the left-hand side of the equation:

\[\sum_{k=0}^{r} \binom{m}{k}\binom{n}{r-k} = \binom{m}{0}\binom{n}{r} + \binom{m}{1}\binom{n}{r-1} + \cdots + \binom{m}{r-1}\binom{n}{1} + \binom{m}{r}\binom{n}{0} = \binom{m+n}{r} \]