Review

- Solving recursions
 - Repeated substitution
 - Works for recurrences of the form
 - \(T(n) = a \, T(n-1) + b \)
 - Linear homogeneous with constant coefficients
 - Example: Fibonacci recurrence \(F(n) = F(n-1) + F(n-2) \)
 - Recurrences of the form
 - \(T(n) = c_1 \, T(n-1) + c_2 \, T(n-2) + \ldots + c_r \, T(n-r) \)
Today’s Topic

• Solving recursions
 – Master Method
 • Works for recurrences of the form
 – \(T(n) = a \, T(n / b) + f(n) \)

Mergesort

• To sort a list of numbers \(L \)
 – Break up \(L \) into two lists of equal size: \(L1 \) & \(L2 \)
 – Recursively sort each list \(L1 \) & \(L2 \)
 – Merge together \(L1 \) & \(L1 \) (how?)
Mergesort

- To sort a list of numbers L

  ```
  Mergesort(L)
  If |L| = 1, Return L
  Else
    (L1, L2) = Split (L)
    Mergesort(L1)
    Mergesort(L2)
    L = Merge(L1, L2)
    Return L
  ```

- \(T(n) = 2 \ T(n/2) + n \)

  ```
  Mergesort(L)
  If |L| = 1, Return L
  Else
    (L1, L2) = Split (L)
    Mergesort(L1)
    Mergesort(L2)
    L = Merge(L1, L2)
    Return L
  ```
Recurrence form

- Recursion of the form
 - \(T(n) = a \cdot T(n / b) + f(n) \)
 - Mergesort: \(2 \cdot T(n/2) + n \)
 - \(a = 2 \)
 - \(b = 2 \)
 - \(f(n) = n \)

- \(T(n) = 3 \cdot T(n / 2) + c \cdot n^2 \) ?

Recurrence Trees

- \(T(n) = 3 \cdot T(n / 2) + c \cdot n^2 \)
Recurrence Trees

- $T(n) = 4T(n/2) + n$

By Term Expansion

- $T(n) = 4T(n/2) + n$
More Examples

- \(T(n) = 2T(n / 4) + \sqrt{n} \)

Recurrence form

• Why do we care?
 - \(T(n) = a \, T(n / b) + f(n) \)
Divide-and-Conquer

• Solving a problem of $T(n)$ by breaking it into smaller parts
 – $T(n) = a \cdot T(n / b) + f(n)$
 – benefit?
 – Examples:
 • Mergesort
 • Shortest distance
 • Binary search

Back to the tree: Master Method

• Given
 – $T(n) = a \cdot T(n / b) + f(n)$
• How do a, b, $f(n)$ determine the shape of the tree?
• Guess $T(n)$ depends on what?
Limited Master Method

- \(T(n) = a \cdot T(n / b) + n \)

Evaluate:
- Case 1: \(a/b < 1 \)
- Case 2: \(a/b > 1 \)
- Case 3: \(a/b = 1 \)
Back to the analysis

• Given
 – $T(n) = a \ T(n \ / \ b) + n$

• How do a, b, $f(n)$ determine the shape of the tree?
• Guess $T(n)$ depends on what?

Examples of Limited Master Method

– $T(n) = 3 \ T(n/2) + n$

– $T(n) = 4 \ T(n/4) + n$

– $T(n) = 4 \ T(n/5) + n$
Master Method

- $T(n) = a \cdot T(n/b) + f(n)$

Case 1: $f(n)$ “larger” than $n^{\log_b a}$

Master Method

- $T(n) = a \cdot T(n/b) + f(n)$

Case 1: $f(n)$ “smaller” than $n^{\log_b a}$
Master Method

- \(T(n) = a \ T(n / b) + f(n) \)

\[\begin{array}{c}
\text{f(n)} \\
\downarrow \\
\text{f(n/b)} \\
\downarrow \\
\text{f(n/b^2)} \\
\downarrow \\
\vdots \\
\downarrow \\
\text{f(n/b^2)} \\
\downarrow \\
\text{f(n/b^2)} \\
\downarrow \\
\ddots \\
\end{array} \]

Case 1: \(f(n) \) “equal” \(n^{\log_b a} \)

Master Method Summary

- Given:
 - \(T(n) = a \ T(n / b) + f(n) \)

- 3 general cases: (in the long run)
 - \(f(n) \) grows faster than \(n^{\log_b a} \)
 - \(f(n) \) grows slower than \(n^{\log_b a} \)
 - \(f(n) \) grows proportional to \(n^{\log_b a} \)
Master Method Notes

• “smaller”, “larger” meaning?
 - must be some factor of n^c different

• “Equal” means within a constant factor

• $f(n)$ may be in none of the three cases!

Examples of Limited Master Method

- $T(n) = 3 \cdot T(n/2) + n^2$

- $T(n) = 3T(n/2) + n^{1.4}$

- $T(n) = 16 \cdot T(n/4) + 10n^2 + 3n + 5$
Review on Recursion

• A problem containing sub-problems of the same structure
 – \(T(n) = T(sth < n) \ldots \)
 – Initial condition \(T(0), T(1), \ldots \)

• Sequence

• Algorithm

Review on Recursion

• Recursive representation: typically simple & beautiful
• What’s the real structure under the recursion coat?
 – Sequence

 – Algorithm