Simple Graph

Definition
- Graph G consists of a pair (V, E)
 - V is a finite set called the vertices
 - E is a subset of the two-element subsets of V called the edges

Example
- Simple graph
- Non-simple graph

Graph

Motivation
- Sometimes, we need more than one edge between 2 vertices

Definition
- A graph G is a triple (V, E, Φ) where:
 - V is a finite set (vertices)
 - E is a finite set (edges)
 - Φ is a function with domain E and codomain 2-element subsets of V (incidence function)

Example

Relationship between graphs and simple graph
Definitions

Loop: an edge that connects a vertex to itself
- Graphs and simple graphs contain no loops
 - Can be allowed by adjusting codomain to be 2-element subsets of V unioned
 with 1-element subsets of V

Degree of vertices
- Given \(v \in V \), the degree, \(d(v) = \) the number of \(e \in E \) such that \(v \in \Phi(e) \)
- The degree sequence of the vertices of G is the sequence of degrees
 of each vertex, sorted in increasing order

Isomorphic
- Two graphs \(G_1 \) and \(G_2 \) are isomorphic iff
 - There is a bijection \(f_V \) from \(V_1 \) to \(V_2 \)
 - There is a bijection \(f_E \) from \(E_1 \) to \(E_2 \)
 - For all \(e \in E_1 \), if \(\Phi_1(E) = \{v_i, v_j\} \), then \(\Phi_2(f(e)) = \{\Phi_2(v_i), \Phi_2(v_j)\} \)

Directed Graph (Digraph)

Motivation:
- Sometimes, we need to distinguish the direction \(v_1 \rightarrow v_2 \) from \(v_2 \rightarrow v_1 \)

Definition
- A digraph \(D = (V, E, \Phi) \) where
 - \(V \) is a finite set
 - \(E \) is a finite set
 - \(\Phi \) is function with domain \(E \) and codomain \(V \times V \)

Converting a simple graph (with loops) to a simple digraph

Walk/Path/Trail Theorem

If \(u \) and \(v \) are distinct vertices in \(G=(V, E, \Phi) \), then the following are equivalent:
- i) There is a walk from \(u \) to \(v \)
- ii) There is a trail from \(u \) to \(v \)
- iii) There is a path from \(u \) to \(v \)

Proof
Subgraph

Definition
- Let \(G = (V, E, \Phi) \) be a graph. A graph \(G' = (V', E', \Phi') \) is a subgraph of \(G \) if:
 - \(V' \subseteq V \)
 - \(E' \subseteq E \)
 - \(\Phi' \) is a restriction of \(\Phi \) to \(E' \) (\(\Phi'(x) = \Phi(x) \) \(\forall x \in E' \))

Subgraph induced by \(V' \)

Subgraph induced by \(E' \)

Circuits and Cycles

Circuit
- Let \(G = (V, E, \Phi) \) be a graph
- Let \(e_1, \ldots, e_n \) be a trail with vertex sequence \(a_1, \ldots, a_n, a_1 \)
- The subgraph \(G' \) of \(G \) induced by \(\{e_1, \ldots, e_n\} \) is a circuit of \(G \) (of length \(n \))
- If the only repeated vertex in the trail is \(a_1 \), then the circuit is called a cycle

Theorem: two distinct vertices, \(u, v \) are on a cycle of \(G \) iff there are \(\geq 2 \) paths from \(u \) to \(v \) that have no vertices in common except the endpoints \(u \) and \(v \)
- Proof:

Connected Graph

Definition
- Let \(G = (V, E, \Phi) \) be a graph.
- If, for any two distinct vertices \(u \) and \(v \), there is a path \(P \) from \(u \) to \(v \), then \(G \) is a connected graph

Informally
- Any vertex is reachable from any other vertex

Connected components
- Given a graph \(G \), the connected components are the minimal set of subgraphs, where each subgraph is connected

Eulerian/Hamiltonian Circuit

Let \(C = (V', E', \Phi') \) be a circuit of \(G = (V, E, \Phi) \)
- If \(E = E' \), then \(C \) is an Eulerian circuit of \(G \)
- If \(V = V' \), then \(C \) is a Hamiltonian circuit of \(G \)

If a graph \(G \) has a Hamiltonian circuit, then \(G \) is a Hamiltonian graph
Trees

Definition
- If G is a connected graph without any cycles, then G is a tree

Equivalent definitions
- If G is a connected graph then the following are equivalent:
 - G is a tree
 - G has no cycles
 - For every pair of distinct vertices u, v in G, there is exactly one path from u to v
 - Removing any edge from G gives a graph which is not connected
 - |V| = |E| + 1

Forest: a graph whose connected components are all trees

Rooted Tree

Definition
- A rooted tree, T, is a pair (G, r) where G is a tree and r is a vertex of V. r is the root of the tree
- For every vertex, w, other than r, given a unique path from r to w: <r, ..., v_k, w> v_k is the parent of w, and w is a child of v_k.
- Vertices that have no children are called leaves
- Vertices with the same parent are called siblings

Rooted Plane Tree (RP-tree)
- Definition: rooted tree where the children of each vertex are ordered.

Binary tree
- Each vertex has at most 2 children

Breadth/Depth-First Search

Breadth-First Search (BFS)
- Add root to queue
- while queue is not empty
 - retrieve vertex from head of queue
 - print vertex
 - add children (in order) to tail of queue

Depth-First Search (DFS)
- Visit(root)
- procedure Visit(vertex) preorder traversal
 - print vertex
 - foreach child of vertex
 - visit(child)

Spanning Tree

Definition
- A spanning tree of a simple graph G=(V,E) is a subgraph T=(V,E') which is a tree

Minimum Spanning Tree
- Given a connected weighted graph G=(V,E,W) (where W is a function with domain E and codomain R)
 - A minimum spanning tree T=(V,E',W') of G is a spanning tree whose sum of weights is no more than that of any other spanning tree of G
Minimum spanning Tree

Generating a minimum spanning tree for a simple graph $G=(V,E,W)$ (Prim’s)
- Start with $E'={}$
- Start with $V'={v}$ for some v in V.
- While $|V'| < |V|$:
 - Find the edge e from E with exactly one edge in V' of minimum weight
 - Add e to E'
 - Add the other vertex of e to V'

Alternative (Kruskal’s)
- Start with $E'={}$
- While $T=(V,E')$ is not connected
 - Find the cheapest edge from E that doesn’t create a cycle in (V,E')
 - Add e to E'

Computational Tractability

Worst case running time. Obtain bound on largest possible running time of algorithm on input of a given size N, and see how this scales with N.
- Generally captures efficiency in practice.
- Draconian view, but hard to find effective alternative.

Desirable scaling property. When the input size increases by a factor of 2, the algorithm should only slow down by some constant factor C.

Def. An algorithm is **efficient** if it has polynomial running time.

Justification. *It really works in practice!*

Asymptotic Order of Growth

Upper bounds. $T(n)$ is $O(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$ we have $0 \leq T(n) \leq c \cdot f(n)$.

Lower bounds. $T(n)$ is $\Omega(f(n))$ if there exist constants $c > 0$ and $n_0 \geq 0$ such that for all $n \geq n_0$ we have $T(n) \geq c \cdot f(n) \geq 0$

Tight bounds. $T(n)$ is $\Theta(f(n))$ if $T(n)$ is both $O(f(n))$ and $\Omega(f(n))$.

Ex: $T(n) = \sum_{i=0}^{n-1} i = \frac{n(n+1)}{2}$
- $T(n)$ is $O(n^2)$, $\Omega(n^2)$, $\Omega(n)$, and $\Theta(n^2)$.
- $T(n)$ is not $O(n)$, $\Omega(n^3)$, $\Theta(n)$, or $\Theta(n^3)$.

Slight abuse of notation. $T(n) = O(f(n))$.

Vacuous statement. Any comparison-based sorting algorithm requires at least $O(n \log n)$ comparisons.

Properties

Transitivity. If $f = O(g)$ and $g = O(h)$ then $f = O(h)$.

Additivity. If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$.
Example

Prove that \(f(n) = 3n^3 - 10n^2 + n - 10 = O(n^3) \)

Example

Prove that \(f(n) = 3n^3 - 10n^2 + n - 10 \neq O(n^2) \)

Example

Prove that \(f(n) = 3n^3 - 10n^2 + n - 10 = \Omega(n^2) \)

Asymptotic Bounds for Some Common Functions

Polynomials. \(a_0 + a_1n + \ldots + a_dn^d \) is \(\Theta(n^d) \) if \(a_d > 0 \).

Polynomial time. Running time is \(O(n^d) \) for some constant \(d \) independent of the input size \(n \).

Logarithms. \(O(\log_a n) = O(\log_b n) \) for any constants \(a, b > 0 \).

Logarithms. For every \(x > 0 \), \(\log n = O(n^x) \).

Exponentials. For every \(r > 1 \) and every \(d > 0 \), \(n^d \leq O(r^n) \).
Linear Time: $O(n)$

Linear time. Running time is at most a constant factor times the size of the input.

Computing the maximum. Compute maximum of n numbers a_1, \ldots, a_n.

```plaintext
max ← a_1
for i = 2 to n {
    if (a_i > max)
        max ← a_i
}
```

Linearithmic Time: $O(n \log n)$

Linearithmic time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform $O(n \log n)$ comparisons.

Largest empty interval. Given n time-stamps x_1, \ldots, x_n on which copies of a file arrive at a server, what is largest interval of time when no copies of the file arrive?

$O(n \log n)$ solution. Sort the time-stamps. Scan the sorted list in order, identifying the maximum gap between successive time-stamps.

Quadratic Time: $O(n^2)$

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$, find the pair that is closest.

$O(n^2)$ solution. Try all pairs of points.

```plaintext
min ← (x_1 - x_2)^2 + (y_1 - y_2)^2
for i = 1 to n {
    for j = i+1 to n {
        d ← (x_i - x_j)^2 + (y_i - y_j)^2
        if (d < min)
            min ← d
    }
}
```

Remark. $\Omega(n^2)$ seems inevitable, but this is just an illusion.

Cubic Time: $O(n^3)$

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S_1, \ldots, S_n each of which is a subset of $1, 2, \ldots, n$, is there some pair of these which are disjoint?

$O(n^3)$ solution. For each pairs of sets, determine if they are disjoint.

```plaintext
foreach set S_i {
    foreach other set S_j {
        foreach element p of S_i {
            determine whether p also belongs to S_j
            if (no element of S_i belongs to S_j)
                report that S_i and S_j are disjoint
        }
    }
}
```
Polynomial Time: $O(n^k)$ Time

Independent set of size k. Given a graph, are there k nodes such that no two are joined by an edge?

$O(n^k)$ solution. Enumerate all subsets of k nodes.

```plaintext
foreach subset $S$ of $k$ nodes {
    check whether $S$ is an independent set
    if ($S$ is an independent set)
        report $S$ is an independent set
}
```

- Check whether S is an independent set = $O(k^2)$.
- Number of k element subsets = $\binom{n}{k} \leq \frac{n^k}{k!}$.
- $O(k^2 \frac{n^k}{k!}) = O(n^k)$.

assuming k is a constant

Exponential Time

Independent set. Given a graph, what is maximum size of an independent set?

$O(n^2 2^n)$ solution. Enumerate all subsets.

```plaintext
S^* ← φ
foreach subset $S$ of nodes {
    check whether $S$ is an independent set
    if ($S$ is largest independent set seen so far)
        update $S^* ← S$
}
```