Problem Set 3

Problems 1-3 pertain to the material covered during the fourth week of class (July 19 - July 23). The remaining problems pertain to the material covered during the fifth week (July 26 - July 30).

1. Prove that the following language is co-recognizable:
 \[A = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = \overline{L(G_2)} \} \]

2. Prove that the following language is co-recognizable:
 \[B = \{ \langle G, G_1, G_2 \rangle \mid G, G_1, G_2 \text{ are CFGs and } L(G) = L(G_1) \cap L(G_2) \} \]

3. Let \(L \) be a recognizable language that is not decidable. Prove that for any TM \(M \) that recognizes \(L \) there are infinitely many strings on which \(M \) does not halt.

4. Prove that the following language is undecidable:
 \[A = \{ \langle G_1, G_2 \rangle \mid G_1, G_2 \text{ are CFGs and } L(G_1) = \overline{L(G_2)} \} \]

5. Prove that the following language is undecidable:
 \[B = \{ \langle G, G_1, G_2 \rangle \mid G, G_1, G_2 \text{ are CFGs and } L(G) = L(G_1) \cap L(G_2) \} \]

6. Prove that the following language is undecidable:
 \[C = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } M_1(\varepsilon) \text{ halts and } M_2(\varepsilon) \text{ does not halt} \} \]

7. Prove that the following language is undecidable:
 \[D = \{ \langle M \rangle \mid M \text{ is a TM that accepts at most one string which ends in a } 0 \} \]

8. Is the following language decidable or undecidable? Justify your answer (i.e., if \(E \) is decidable then construct a decider for it; otherwise, prove that it is undecidable).
 \[E = \{ \langle M_1, M_2 \rangle \mid M_1, M_2 \text{ are TMs and } L(M_1) \subseteq L(M_2) \} \]