Lecture 4 Overview

- Regular operations on languages
- Closure properties of the class of regular languages
- Regular expressions
- Equivalence of regular expressions and finite automata

Regular Operations on Languages

Def: Let L, L_1 and L_2 be languages over alphabets Σ, Σ_1, and Σ_2, respectively. The regular operations union, concatenation, and star are defined as follows.

Union: $L_1 \cup L_2 = \{w \in \Sigma_1^* \cup \Sigma_2^* \mid w \in L_1 \text{ or } w \in L_2\}$

Concatenation: $L_1 \cdot L_2 = L_1L_2 = \{w \in (\Sigma_1 \cup \Sigma_2)^* \mid w = w_1w_2 \text{ for some } w_1 \in L_1, w_2 \in L_2\}$

Star: $L^* = \{w \in \Sigma^* \mid w = w_1 \ldots w_n \text{ for some } n \geq 0, w_1, \ldots, w_n \in L\}$
Closure Properties of the Class of Regular Languages

Theorem: If L, L_1, and L_2 are regular languages over an alphabet Σ, then the following languages are also regular.

1) $\overline{L} = \{w \in \Sigma^* | w \notin L\}$
2) $L_1 \cup L_2 = \{w \in \Sigma^* | w \in L_1 \text{ or } w \in L_2\}$
3) $L_1 \cap L_2 = \{w \in \Sigma^* | w \in L_1 \text{ and } w \in L_2\}$
4) $L_1 \cdot L_2 = \{w \in \Sigma^* | w = w_1w_2 \text{ for } w_1 \in L_1, w_2 \in L_2\}$
5) $L^* = \{w \in \Sigma^* | w = w_1 \cdots w_n \text{ for } n \geq 0, w_1, \ldots, w_n \in L\}$

Before proving this, let’s consider some examples.

Closure Properties – Examples

Let $\Sigma = \{0, 1\}$.

Ex. 1)
$L = \{w \in \{0, 1\}^* | w \text{ does not contain substring 1010}\}$
Is L regular?
Closure Properties – Examples

Ex. 2) Prove that the following language is regular.
\[L = \{ w \mid w \text{ starts with 110 and contains substring 1010} \} \]

Closure Properties – Proof of Theorem

Recall the theorem we proved yesterday:

Theorem: A language \(L \) is regular if and only if there exists an NFA that recognizes \(L \).

We will use this result.
Closure Properties – Proof of Theorem

Proof of Theorem – part 1):

Given: L is regular, i.e., there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that recognizes L.

Want: $\overline{L} = \{w \in \Sigma^* \mid w \notin L\}$ is regular, i.e., there exists an NFA N that recognizes \overline{L}. We will build N. (We could build a DFA instead, but NFAs are often simpler.)

Construction: $N = (Q', \Sigma, \delta', q'_0, F')$, where

$Q' = \hdots$
$\delta' = \hdots$
$q'_0 = \hdots$
$F' = \hdots$

Closure Properties – Proof of Theorem

Proof of Theorem – part 2):

Given: L_1 and L_2 are regular, i.e., there exist DFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ that recognize L_1 and L_2, respectively.

Want: $L_1 \cup L_2 = \{w \in \Sigma^* \mid w \in L_1 \text{ or } w \in L_2\}$ is regular, i.e., there exists an NFA N that recognizes $L_1 \cup L_2$. We will build N.

Construction: $N = (Q, \Sigma, \delta, q_0, F)$, where

$Q = \hdots$
$\delta = \hdots$
$q_0 = \hdots$
$F = \hdots$
Closure Properties – Proof of Theorem

Nondeterminism makes the construction easy!
Construction: \(N = (Q, \Sigma, \delta, q_0, F) \), where

Proof of Theorem – part 3):

Given: \(L_1 \) and \(L_2 \) are regular, i.e., there exist DFAs \(M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \) and \(M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2) \) that recognize \(L_1 \) and \(L_2 \), respectively.
Want: \(L_1 \cap L_2 = \{ w \in \Sigma^* \mid w \in L_1 \text{ and } w \in L_2 \} \) is regular, i.e., there exists an NFA \(N \) that recognizes \(L_1 \cap L_2 \).

We could build \(N \), but there is an easier way to prove that \(L_1 \cap L_2 \) is regular.
Closure Properties – Proof of Theorem

Given: L_1 and L_2 are regular.
Want: $L_1 \cap L_2$ is regular.

Closure Properties – Proof of Theorem

Proof of Theorem – part 4):

Given: L_1 and L_2 are regular, i.e., there exist DFAs $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ that recognize L_1 and L_2, respectively.

Want:
$L_1 \cdot L_2 = \{w \in \Sigma^* | w = w_1w_2 \text{ for some } w_1 \in L_1, w_2 \in L_2\}$
is regular, i.e., there exists an NFA N that recognizes $L_1 \cdot L_2$. We will build N.
Closure Properties – Proof of Theorem

Again, nondeterminism makes the construction easy!
Construction: \(N = (Q, \Sigma, \delta, q_0, F) \), where

Closure Properties – Examples

Ex. 3) Consider the following languages.

\(L_1 = \{ w \mid w \text{ starts with 10} \} \)
\(L_2 = \{ w \mid w \text{ starts with 111} \} \)

By part 2) of the theorem,
\(L_1L_2 = \)

is regular.
Closure Properties – Examples

Ex. 4) Let \(L = \{00, 01, 10, 11\} \). Then

\[
L^* = \{ w_1 \cdots w_n | n \geq 0 \text{ and } w_1, \ldots, w_n \in L \} = \]

By part 5) of the theorem, \(L^* \) is regular.

Closure Properties – Proof of Theorem

Proof of Theorem – part 5): Given: \(L \) is regular, i.e., there exists a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) that recognizes \(L \).

Want:
\(L^* = \{ w \in \Sigma^* | w = w_1 \cdots w_n \text{ for } n \geq 0, w_1, \ldots, w_n \in L \} \) is regular, i.e., there exists an NFA \(N \) that recognizes \(L^* \). We will build \(N \).

Construction: \(N = (Q', \Sigma, \delta', q'_0, F') \), where
\[
Q' = \quad \delta' = \quad q'_0 = \quad F' = \]
Closure Properties – Proof of Theorem

Construction: $N = (Q', \Sigma, \delta', q'_0, F')$, where

Regular Expressions