Lecture 3 Overview

- Things to remember
- Nondeterministic Finite Automaton (NFA): definition, examples
- Equivalence of DFAs and NFAs
- Introduction to regular operations and closure properties of regular languages

Things to remember

- \emptyset is the empty set, i.e., the set that contains 0 elements: $\emptyset = \{\}$
- ε (“epsilon”) is the empty string, i.e., the string that has 0 symbols (and hence length 0).
- We will not use \emptyset or ε as alphabet symbols. These are distinguished symbols that have the meanings indicated above.
- $\{\varepsilon\}$ is not an alphabet! It is a language that consists of only the empty string.
- \emptyset is a language too. The language that contains no strings at all.
Nondeterminism

Nondeterminism allows several possible next states at every step.

Determinism:

\[\text{one next state per } s \]

Nondeterminism:

\[\text{set of next states per } s \]

State diagrams – NFA versus DFA

<table>
<thead>
<tr>
<th>NFA</th>
<th>DFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• a state may have 0, 1, or many exiting transitions for each symbol in the alphabet</td>
<td>• every state has exactly one exiting transition for each symbol in the alphabet</td>
</tr>
<tr>
<td>• labels on the transition arrows are symbols from the alphabet or the distinguished symbol (\varepsilon)</td>
<td>• labels on the transition arrows are symbols from the alphabet</td>
</tr>
</tbody>
</table>
Formal Definition of NFA

Def: A nondeterministic finite automaton (or NFA) is a 5-tuple \(M = (Q, \Sigma, \delta, q_0, F) \), where

1. \(Q \) is a finite set of states
2. \(\Sigma \) is an alphabet
3. \(\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow \mathcal{P}(Q) \) is the transition function
4. \(q_0 \in Q \) is the start state
5. \(F \subseteq Q \) is the set of accept (final) states.

\(\mathcal{P}(Q) \) is the set of all subsets of \(Q \).

Computation for NFAs

An NFA \(M \) accepts a string \(w \in \Sigma^* \) if there is some path to follow on \(w \) that ends in a final (i.e., accept) state.

\(M \) rejects \(w \) if all paths on \(w \) end in non-accepting states.

Formally, ...
Formal Definition of Computation for NFAs

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ. M accepts w if there is a sequence of symbols $w_1, w_2, \ldots, w_n \in \Sigma \cup \{\varepsilon\}$, where $w = w_1w_2 \cdots w_n$, and a sequence of states $r_0, r_1, \ldots, r_n \in Q$ such that

1. $r_0 = q_0$ (starts right)
2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for $i = 0, \ldots, n - 1$ (moves right)
3. $r_n \in F$ (ends right)

Formal Definition of Computation for NFAs

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA. M recognizes a language L if $L = \{w \in \Sigma^* \mid M \text{ accepts } w\}$, i.e.,

For all $w \in \Sigma^*$:

- $w \in L \Rightarrow M \text{ accepts } w$
- $w \notin L \Rightarrow M \text{ rejects } w$

Notation: $L(M)$ denotes the language recognized by M.
NFA example (without ε-transitions)

\[q_1 \xrightarrow{\varepsilon} q_2 \]

Without reading the next input symbol, the machine splits into two copies of itself.
One of them follows the ε-transition.
The other stays at q_1.
In parallel, each copy continues its nondeterministic computation.
NFA example (with ε-transitions)

\[\begin{array}{c}
\circlearrowleft 0, 1 \\
\rightarrow 1 \\
\rightarrow 0, 1 \\
\rightarrow 0, 1, \varepsilon \\
\end{array}\]
NFA example – formal description

\[M: \]

- \[0 \to 1 \to 0 \]
- \[q_0, q_1, q_2, q_3 \]
- \[\{0, 1\} \]
- \[\delta(q_0, \epsilon) = \emptyset \]

\[M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_3\}), \text{ where} \]

\[\delta(q_0, 0) = \{q_0, q_1\} \]
\[\delta(q_0, 1) = \{q_0\} \]
\[\delta(q_0, \epsilon) = \emptyset \]

Why NFAs?

- NFAs seem more powerful than DFAs. We will show that they are not.
- Building NFAs is often easier than building DFAs
- NFAs may be more compact than DFAs that recognize the same language.

Is every DFA an NFA?
Equivalence of NFAs and DFAs

Two machines \(M_1, M_2 \) are equivalent if \(L(M_1) = L(M_2) \).

DFAs and NFAs recognize the same class of languages: regular languages.
To show this, we will prove the following.

Equivalence of NFAs and DFAs

Theorem: A language \(L \) is regular if and only if there exists an NFA that recognizes \(L \).

Proof: We must prove two statements:
1) If \(L \) is a regular language then there exists an NFA that recognizes it.
2) If there exists an NFA that recognizes a language \(L \), then \(L \) is regular.
Equivalence of NFAs and DFAs

1) If L is a regular language then there exists an NFA that recognizes it.

Proof of 1):
Given: L is regular, i.e., there exists a DFA M that recognizes L.
Want: An NFA N that recognizes L.
Construction: Let $N = M$. Since any DFA is an NFA, N is an NFA that recognizes L.

Equivalence of NFAs and DFAs

2) If there exists an NFA that recognizes a language L, then L is regular.

Proof of 2):
Given: There exists an NFA N that recognizes L.
Want: L is regular, i.e., there exists a DFA M that recognizes L. We will build M.
Construction: