CS123: Lecture 6, Error Detection

George Varghese

January 26, 2000
Error Detection using Parity

• Random versus Burst Errors. For same error rate, burst is better.

• Parity: ExOR of bits. Can detect all odd bit errors in a frame. Can’t detect 2 bit errors. 1011 sent as 10111.

• Would like to do better than parity using so-called checksums for detecting larger number of errors (happens often). A simple concept called Hamming Distance explains why some codes detect and correct more bits.

• Hamming Distance between two strings S and R is the number of bit positions they differ. Thus Hamming Distance of 11011 and 10111 is 2.
2d + 1 Hamming Distance corrects d bit errors

2d + 1 Hamming Distance detects 2d bit errors

For example if we encode 0 with 000 and 1 with 111
We can correct 1 bit errors. Can do better!
ORDINARY DIVISION CHECKSUM

• Consider message M and generator G to be binary integers.

• Let r be number of bits in G. We find the remainder t of $2^r M$ when divided by G. Why not just M? So that we can separate checksum from message at receiver by looking at last r bits.

• Thus $2^r M = k.G + t$. Thus
 $2^r M + G - t = (k + 1)C$. Thus we add a checksum $c = G - t$ to the shifted message and the result should divide G.

• Has some reasonable properties. However integer division hard to implement. Prefer to do without carries.
The Big Idea

• In ordinary division checksums we transmitted a message plus checksum that was divisible by the generator G. Thus any errors that cause the resulting number to be not divisible by G (invalid codewords) will be detected.

• In CRCs, we do the same thing except that we use Mod 2 arithmetic instead of ordinary arithmetic.
MODULO 2 ARITHMETIC

• No carries. Repeated addition does not result in multiplication. e.g. 1100 + 1100 = 0000;
 1100 + 1100 + 1100 = 1100

• Multiplication is normal except for no carries: e.g. 1001 * 11 = 10010 + 1001 = 11011. Shift and Ex-or
 instead of Shift and Add as in normal arithmetic.

• Similar algorithm to ordinary division. Again let r
 be number of bits in G. We find the remainder c
 of $2^{r-1}M$ when divided by G. Why only shift
 message $r - 1$ bits this time?

• Thus $2^{r-1}M = k.G + t$. Thus $2^{r-1}M - t = k.G$.
 Thus $2^{r-1}M + t = k.G$ because addition is same
 as subtraction.
How does ordinary division work

\[
\begin{array}{c}
98 \\
\hline \\
62 & 7344 \\
62 & \\
\hline \\
114 \\
62 \\
\hline \\
524 \\
496 \\
\hline \\
28 \\
\end{array}
\]

- Can be viewed as repeated subtractions of multiples of 62 (i.e., 6200, 620, 496) until we get a number less than 62, which is the remainder.
Mod 2 division and CRCs

Let $M = 11$ and $G = 101$. then $2^{r-1}M = 1100$.

\[
\begin{array}{c|c|c}
11 & & \\
\hline
101 & 1100 & \\
101 & & \\
\hline
110 & & \\
101 & & \\
\hline
11 & & \\
\end{array}
\]

- For CRC, we need to repeatedly add (mod 2) multiples of the generator until we get a number that is $r - 1$ bits long that is the remainder.
- The only way to reduce number of bits in Mod 2 arithmetic is to remove MSB by adding (mod 2) a number with a 1 in the same position.
CRC: Polynomial View

• 101 and 011 can be represented as $X^2 + 1$ and $X + 1$. X^i term iff the i-th bit is 1.

• Normal addition: $X^2 + X + 2$. No carries between powers. $2X$ is bad. Fix by using Mod 2 addition (EX-OR) to get: $X^2 + X$

• Can think of CRC computation as dividing a shifted message polynomial (multiplied by x^{r-1}) by CRC divisor polynomial and adding remainder.

• Equivalent to arithmetic view, but poly view is easier to analyze.
CRC PROPERTIES

CRC-16: \(X^{16} + X^{15} + X^2 + 1 \).

Error results in adding in a polynomial. Use normal polynomial division intuition.

Single bit errors: result in addition of \(x^i \). If \(G(x) \) has at least two terms, any multiple of \(G(x) \) will have two terms.

Two bit errors correspond to adding \(x^i + x^j \), which will not divide if \(G(x) \) does not divide \(x^k + 1 \) for sufficiently large \(k \).

Odd bit error polynomials are never divisible by \(x + 1 \). So make \(G \) have \(x + 1 \) as a factor.

Burst errors of length \(k \) adds \(x^i(x^{k-1} + \ldots 1) \). Can catch if \(k \leq \) polynomial degree. Any multiple of generator will have a term of \(x^k \) or higher.
Implementing CRCs

- The current remainder is held in a register initialized with first r bits of the message.
- If MSB of current remainder is 1, then EXOR current remainder with divisor; if the MSB is 0, do nothing.
- Shift the current remainder 1 bit to the left and shift in next message bit.
Lessons from Framing and CRCs

• End-to-end argument.

• Sublayering is a powerful tool: bit stuffing implementation, error recovery on top of framing. Sublayers extract their penalty.

• Common problems at layers and exploiting solutions at other layers: coding, bit and frame synchronization, getting extra symbols from physical layer.

• Arguing by Analogy: ordinary division and CRC. Helps when trying to do CRC multiple bits at a time.

• Having Multiple Views: Bit string view for CRC computation and polynomial view for analysis.

• General and abstract approaches help: error detection in terms of coding.