CS423: Lecture 22, Route Computation

George Varghese

November 11, 1996
Distance Vector

- Two principal methods for Route Computation: distance vector (IP) and link state (OSI). We will study both.

- Distance vector: how can we use spanning tree protocol idea. We found distances to min ID node by “gossip”. Use same idea for updating distance to all nodes.

- Previously we kept (Root, distance, parent). Now we keep a vector of (ID, distance). Hence called distance vector.
Distance Vector Databases

- As in Spanning Tree, we have port and central databases.
- Central is computed based on best port database.
Link Failures and Distance Vector

• On link failure, delete stored distance vector for that port. Link failure is reported by neighbor discovery (because we haven’t received a hello from that neighbor for a while).

• Different from spanning tree in that there is no aging of information except the local aging used to detect link failures. Instead must rely on something call count-to-infinity.

• Also unlike spanning tree, you send whenever information changes. Periodic sending is a good idea for robustness but not strictly necessary.
Data Packet Looping

- After A crashes, B and C keep thinking the best way to get to A is through each other.
- Thus a data packet destined to A will keep looping until either the hop-count in the packet reaches its maximum value or B and C finally decide that A is down.
Link State History

- The ARPANET is a large national network that is part of the global Internet. (ARPANET has a net number). Classic network in a historic sense.

- Originally, ARPANET used distance vector. However, failure recovery times were very slow after node failures because of count-to-infinity problem. Also data packets kept looping during this period.

- New ARPANET moved to link state routing which has quicker response to failures and no count-up problem. Similar design used by OSI Routing. packets
Link State: the basic idea

- Each node knows the default (or manager settable) cost of its outgoing links. Neighbor discovery is used to compile a list of neighbors that are UP. This information, along with link costs, is placed in a Link State Packet (LSP).

- Each source broadcasts its LSP to *all* other nodes using a primitive flooding mechanism called intelligent flooding.

- After the LSP propagation process stabilizes, each node has a complete and identical picture of the network graph. Then each node S uses any shortest path algorithm (i.e., Dijkstra’s) to compute the next node on the shortest path from S to every other node D.
LSP Generation
LSP Generation on Failure

- If link AC fails, neighbor discovery in A and C will eventually detect failure.
- Only A and C recompute their LSP values and broadcast their LSPs again to all other nodes. Other nodes do not recompute or rebroadcast their LSPs.
Crash data packet to A can loop

which means:

<table>
<thead>
<tr>
<th>LSP</th>
<th>A</th>
<th>B</th>
<th>1</th>
<th>C</th>
<th>2</th>
</tr>
</thead>
</table>
which means:

```
LSP
A B 1
```

A → B
LSP PROPAGATION: FLOODING?
INTELLIGENT FLOODING
INTELLIGENT FLOODING: CRASHES
LINK STATE CODE

LSP\((A,s,D)\)

\[\overset{R}{\longrightarrow} \]

\[\text{Port} \quad P \]

RECEIVE LSP\((A,s,D)\) **on PORT** \(P\)

- **IF** \(s < \text{SEQ}(A)\) **THEN**
 - SEND STORED−LSP\((A)\) **ON PORT** \(P\)
 - ACK\([A,P] = \text{TRUE}\)
- **ELSEIF** \(s > \text{SEQ}(A)\) **THEN**
 - **IF** \(A = \text{ME}\) **THEN** (*source must jump*)
 - SEQ\((\text{ME}) = s + 1;\)
 - SEND STORED−LSP\((A)\) **ON ALL PORTS**
 - FOR ALL PORTS \(Q, \text{ACK}[\text{ME},Q] = \text{TRUE}\)
 - **ELSE**
 - STORED−LSP\((A) = LSP(A,s,D)\)
 - SEND STORED−LSP\((A)\) **ON ALL PORTS** \(P<>Q\)
 - FOR ALL PORTS \(Q<>P, \text{ACK}[A,Q] = \text{TRUE}\)
- **ELSE**
 - SEND ACK\((A,s)\) **ON PORT** \(P\)
 - ACK\([A,P] = \text{FALSE}\)

PERIODICALLY

FOR ALL PORTS \(P\) **and** \(A\) **with** ACK\([A,P] = \text{TRUE}\)

SEND STORED−LSP\((A)\) **ON PORT** \(P\)

RECEIVE ACK\((A,s)\)

- **IF** \(s = \text{SEQ}(A)\) **THEN**
 - ACK\([A,P] = \text{FALSE}\)

LINK ON PORT \(P\) **COMES UP**

FOR ALL SOURCES \(A\) **DO**

SET ACK\([A,P] = \text{TRUE}\) (*send all LSPs on P*)