Problem 1: (2 points)
The following algorithm to test whether a number \(q \) is prime was presented in the first lecture:

```plaintext
PRIME(q)
1 for i ← 2 to \( \sqrt{q} \) do
2 if i divides q then return NO
3 return YES
```

Show that \(\text{PRIME} \) is correct, that is, that \(\sqrt{q} \) is a correct upper bound for potential divisors of \(q \).

Proof: It suffices to show that if \(q \) has divisors different than 1 and \(q \) then it has at least one divisor between 2 and \(\sqrt{q} \). We prove it by contradiction: suppose that \(q = x \cdot y \) and that \(x > \sqrt{q} \) and \(y > \sqrt{q} \), then \(x \cdot y > \sqrt{q} \cdot \sqrt{q} = q \), that is, \(q > q \), contradiction.

Problem 2: (2 points)
a divide an conquer algorithm \(A \) splits the original problem in two related subproblems of size \(\sqrt{n} \) and then needs \(\log n \) time to combine the solutions of the subproblems into a solution for the original problem. What’s the running time of \(A \)?

Proof: The recurrence for the running time of \(A \) is (1 point)

\[
T(n) = 2T(\sqrt{n}) + \log n.
\]

Let’s solve this recurrence (1 point) now. Substituting \(n = 2^m \), we get that \(T(2^m) = 2T(2^{m/2}) + m \); notice that \(m = \log n \). Further, substituting \(S(m) = T(2^m) \), we obtain the new recurrence \(S(m) = 2S(m/2) + m \) which is the same as the one for merge sort, so its solution is \(S(m) = m \log m \). Substituting back \(S(m) = T(2^m) \) and \(m = \log n \), we obtain that \(T(n) = \log n \cdot \log \log n \).

Problem 3: (6 points)
Let \(A = \{3, 9, 5, 3, 1, 4, 8, 7\} \). Illustrate the execution of

1. \(\text{INSERTION-SORT}(A) \);
2. \(\text{SELECTION-SORT}(A) \);
3. \(\text{QUICK-SORT}(A, 1, 8) \); do not illustrate the execution of \(\text{PARTITION} \);
4. \(\text{MERGE-SORT}(A, 1, 8) \); do not illustrate the execution of \(\text{MERGE} \);
5. \(\text{HEAP-SORT}(A) \); do not illustrate the executions of \(\text{BUILD-HEAP} \) and \(\text{HEAPIFY} \);
6. \(\text{COUNTING-SORT}(A, 9) \).

Proof: We only show how the array \(A \) is modified. This is enough to show that you understood the sorting algorithms. There were many different solutions in your quizzes; I considered them all correct if it was clear that you understood the algorithms.
1. **Insertion-Sort**

 (3, 9, 5, 3, 1, 4, 8, 7)
 (3, 9, 5, 3, 1, 4, 8, 7)
 (3, 5, 9, 3, 1, 4, 8, 7)
 (3, 3, 5, 9, 1, 4, 8, 7)
 (1, 3, 3, 5, 9, 4, 8, 7)
 (1, 3, 3, 4, 5, 9, 8, 7)
 (1, 3, 3, 4, 5, 8, 9, 2)
 (1, 3, 3, 4, 5, 7, 8, 9)

2. **Selection-Sort**

 (3, 9, 5, 3, 1, 4, 8, 7)
 (1, 9, 5, 3, 3, 4, 8, 7)
 (1, 5, 9, 3, 3, 4, 8, 7)
 (1, 3, 9, 5, 3, 3, 4, 8, 7)
 (1, 3, 5, 9, 3, 3, 4, 8, 7)
 (1, 3, 3, 3, 9, 5, 4, 8, 7)
 (1, 3, 3, 4, 9, 5, 4, 8, 7)
 (1, 3, 3, 4, 5, 9, 8, 7)
 (1, 3, 3, 4, 5, 7, 8, 9)

3. **Quick-Sort**

 The array A is first partitioned as (consider that the pivot is $A[1]$) $\langle 1, 3, 3, 9, 5, 4, 8, 7 \rangle$. Then $\text{Quick-Sort}(A, 1, 3)$ and $\text{Quick-Sort}(A, 4, 8)$ are called. The first is not going to change the array A, so we only illustrate the second. The subarray $\langle 9, 5, 4, 8, 7 \rangle$ is again partitioned (the pivot is now) modifying A to $\langle 1, 3, 3, 7, 5, 4, 8, 9 \rangle$ and then $\text{Quick-Sort}(A, 4, 7)$ is called. We keep doing this and obtain $\langle 1, 3, 3, 4, 5, 7, 8, 9 \rangle$.

4. **Merge-Sort**

 (3, 9, 5, 3, 1, 4, 8, 7)
 (3, 9, 5, 3) (1, 4, 8, 7)
 (3, 9) (5) (3) (1) (4) (8) (7)
 (3, 9) (3, 5) (1, 4) (7, 8)
 (3, 3, 5, 9) (1, 4, 7, 8)
 (1, 3, 3, 4, 5, 7, 8, 9)

5. **Heap-Sort**

 The procedure Build-Heap yields $A = \langle 9, 7, 8, 3, 1, 4, 5, 3 \rangle$. Then the following changes generated by swap-ings and heapifies end up with the sorted array:

 (3, 7, 8, 3, 1, 4, 5, 9)
 (8, 7, 5, 3, 1, 4, 3, 9)
 (3, 7, 5, 3, 1, 4, 8, 9)
 (7, 3, 5, 3, 1, 4, 8, 9)
 (4, 3, 5, 3, 1, 7, 8, 9)
 (5, 3, 4, 3, 1, 7, 8, 9)
 (1, 3, 4, 3, 5, 7, 8, 9)
 (4, 3, 1, 3, 5, 7, 8, 9)
 (3, 3, 1, 4, 5, 7, 8, 9)
 (1, 3, 3, 4, 5, 7, 8, 9)
 (1, 3, 3, 4, 5, 7, 8, 9)

6. **Counting-Sort**

 The frequency array is $F = \langle 1, 0, 2, 1, 1, 0, 1, 1, 1 \rangle$. After the next step, it becomes $F = \langle 1, 1, 3, 4, 5, 5, 6, 7, 8 \rangle$. Next, we visit the elements in A from the last one toward the first and output them in B according to F, appropriately decreasing the frequencies. We get $B = \langle 1, 3, 3, 4, 5, 7, 8, 9 \rangle$ and $F = \langle 0, 1, 1, 3, 4, 5, 5, 6, 7 \rangle$.