A Design Analysis of a Hybrid Technology Multithreaded Architecture for Petaflops Scale Computation

Thomas Sterling and Larry Bergman
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

ABSTRACT

Petaflops scale computing may be feasible within the next five to seven years through a mix of emerging innovative device technologies. Important advances in the fields of superconductor logic, optical communications and storage, and processor-in-memory (PIM) semiconductor fabrication are yielding dramatic improvements in speed, power consumption, and parts count with respect to conventional device technologies. The Hybrid-Technology Multithreaded (HTMT) parallel computer architecture has been developed to address the challenges of incorporating these new devices in an effective computing system. HTMT employs proactive latency management and parallel task scheduling mechanisms enabled by PIM DRAM and SRAM to eliminate most long access delays and overhead operations by the very high speed processors, thus providing high processor efficiency. A two year research project conducted by a dozen institutions and sponsored by four US Federal agencies has developed and investigated the HTMT architecture and its design space tradeoffs. The detailed quantitative findings of this interdisciplinary study have demonstrated the viability of implementing a petaflops scale HTMT computing system as early as 2004. This paper is the first formal presentation of the interim findings of the HTMT research project and describes the HTMT architecture with its enabling technologies including in-depth quantitative analysis of its size, power, and complexity characteristics.

1. INTRODUCTION

Even as Teraflops scale systems are becoming available for a few high priority applications of national interest, experts across diverse fields in engineering and the sciences have identified a multiplicity of important applications that require far greater capability, on the scale of a petaflops. Teraflops scale massively parallel processors (MPPs) are being implemented in CMOS technology at a cost of approximately 100 million dollars and power consumption of megawatts. Direct scaling of these technologies to the petaflops regime would be prohibitive in cost, power consumption, and size. Estimates of when such performance would be feasible relying on incremental semiconductor advances and conventional MPP system architecture range from the year 2010 to 2015. But even then, important advances in semiconductor lithography and fabrication would be required with no promise of the means of making efficient use of such resources when available. For those important applications already requiring such throughput, the prospects based on conventional strategies in the near term are not favorable.

Historically, the evolution of computer system design has been marked by dramatic gains in performance and price-performance enabled by advanced device technologies combined with innovative concepts in computer architecture. Mainframes, vector supercomputers, and MPPs have each represented a distinct synergism of device technology, system organization, and execution model. While the MPP strategy approaches maturity, a new opportunity is emerging in a set of device technologies and architecture principles that may make possible petaflops scale systems in five to seven years instead of ten to fifteen years [8]. These technologies include advanced Silicon-Germanium and superconductor logic, optical communications, holographic optical storage, and processor-in-memory DRAM. Task and latency management architecture concepts based on advanced multithreaded execution models provide a means for organizing these and other possible technologies to derive a possible next stage in high end computer system implementation. A major research project has been conducted to develop and evaluate a hybrid technology multithreaded (HTMT) architecture incorporating advanced devices and employing proactive runtime adaptive latency management mechanisms.

This paper is the first formal presentation of the findings of the ambitious HTMT study [4, 5] and reports on the feasibility of achieving petaflops in a few years by harnessing these advanced technologies. A detailed quantitative analysis is provided that determines the size, complexity, cost, power consumption,
and operational parameters of the HTMT system and its constituent elements capable of being implemented in the year 2004. The next section of this paper discusses the key constraints restricting achievable performance and describes the strategy embodied by the HTMT architecture to address each of these. Section 3 presents a description of each of the enabling technologies and their operational characteristics. Section 4 describes the HTMT architecture with a brief discussion of the task and latency management execution model. Section 5 provides the principle quantitative results of this work giving a detailed specification of the structure, size, complexity, and power consumption of an HTMT based petaflops computer in 2004. Finally, Section 6 concludes with a discussion of the greatest challenges to accomplishing petaflops computing by means of the methods described as well as a brief outline of future work leading to a small test prototype.

2. APPROACH

The objectives of the HTMT project are to develop a scalable architecture with high sustained performance in the presence of disparate cycle times and latencies in order to exploit diverse device technologies with superior properties and to incorporate an execution model that simplifies parallel system programming while expanding generality and applicability. Realization of a very high performance computing system will simultaneously address a number of critical constraints to practical implementation. Any credible approach to high end computer architecture must include a strategy that compensates for the challenges of:

- Aggregating sufficient computing resources to achieve the necessary peak performance,
- Incorporating sufficient data storage capacity and memory bandwidth,
- Constraining system manufacture costs to within market tolerance,
- Limiting power consumption including cooling within practical bounds,
- Managing latency, task supervision overhead, and resource contention delays for high efficiency and sustained performance, and
- Providing programmability and generality for wide applicability and ease of use.

The HTMT architecture (Fig. 1) addresses all of these through a combination of device technology and architecture innovation. Peak performance is accomplished by use of superconductor rapid single flux quantum (RSFQ) logic which will enable local clock rates of greater than 100 GHz. Additional performance is gained by a large number of small processors embedded in the main memory itself that are well suited for various data intensive operations. Data storage capacity is achieved by augmenting semiconductor DRAM technology with high density holographic photo-refractive storage.

Memory bandwidth (Fig. 2) is achieved in several ways. Operations performed internally to the memory chips using PIM technology have direct access to the memory row buffers and can operate on all bits simultaneously within one DRAM memory cycle. While exhibiting a longer access time, the holographic storage acquires a megabit page at a time yielding very high bandwidth. And the Data Vortex optical communication network exploits both TDM and WDM encoding to achieve hundreds of gigabits per second per fiber. To the extent that cost is a function of system complexity and parts count, by using technologies with very high throughput and capacities, fewer parts are required for a given performance capability.

Power consumption is one of the most important challenges and is addressed, again, through a mix of technologies. The superconductor RSFQ technology, in spite of its need for refrigeration, consumes less than one percent of the power required for conventional technologies delivering comparable performance. PIM technology consumes about one tenth the power of conventional approaches because of its efficient use of on-chip memory bandwidth. Holographic storage also requires much less power per bit than
conventional memory. The Data Vortex optical network employs much less power for a given bandwidth than would be required by conventional wire based carriers.

Efficiency is determined by a number of factors including access latency, overhead of task management, contention for shared physical resources, and starvation due to insufficient work to keep all parallel processors busy. The HTMT system architecture addresses these performance inhibiting factors by a distributed runtime strategy of task management and latency hiding using advanced multithreaded mechanisms implemented in both the high speed processors and smart PIM memories. Latencies of up to a few hundred cycles are hidden by supporting multiple concurrent active threads and their local state within the high speed processors and switching among any pair of them within a single cycle. A second level of task management is handled by the smart cache SRAM PIM and the main memory DRAM PIM layers, migrating pending processes to the SRAM while moving suspended processes to the DRAM.

More efficiency is achieved by performing some operations in-place on the data in memory where spatial and temporal locality do not warrant processor action. Gather/scatter operations and traversal of irregular pointer-linked data structures are thus efficiently performed. Memory to memory data movement can be accomplished, again without processor intervention.

Both programmability and generality of application are enhanced with respect to MPP oriented practices by greatly reducing the direct resource management responsibilities of the programmer and providing architecture supported runtime mechanisms for adaptive resource management. A single global memory name space is employed as opposed to the fragmented memory blocks found on many MPPs. The "percolation" method of migrating ready tasks from the memory to the smart cache and dynamically load balancing across the array of high speed processors, again eliminates programmer intervention.

The overall target specifications of the HTMT system are shown in the Table 1 below. The latency refers to the number of clock cycles a processor must wait (one way) to access that memory system. More detail of each of the HTMT component parts and specifications will be described in the following sections.

<table>
<thead>
<tr>
<th>Sub-System Element</th>
<th>Parts Count</th>
<th>Total Size</th>
<th>I/O Bandwidth (B/s)</th>
<th>Latency (PE cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEs</td>
<td>4096 pes</td>
<td>1 PFLOP/s</td>
<td>1.2-12 PB/s</td>
<td>-</td>
</tr>
<tr>
<td>CRAM</td>
<td>16K ics</td>
<td>512 MB</td>
<td>8 PB/s</td>
<td>70</td>
</tr>
<tr>
<td>SRAM</td>
<td>16K ics</td>
<td>1 TB</td>
<td>4 PB/s</td>
<td>240</td>
</tr>
<tr>
<td>Optical Net</td>
<td>372K nodes</td>
<td>6250 ports</td>
<td>640 TB/s</td>
<td>10K</td>
</tr>
<tr>
<td>DRAM</td>
<td>32K ics</td>
<td>16 TB</td>
<td>320 TB/s</td>
<td>16K</td>
</tr>
<tr>
<td>HRAM</td>
<td>128K ics</td>
<td>1 PB</td>
<td>320 TB/s</td>
<td>67K</td>
</tr>
<tr>
<td>Disk</td>
<td>100K-1M</td>
<td>10PB-100PB</td>
<td>1 TB/s - 10 TB/s</td>
<td>100G</td>
</tr>
<tr>
<td>Tape - robots - transports</td>
<td>20-200 250-2500</td>
<td>100PB - 1EB</td>
<td>24 GB/s - 240 GB/s</td>
<td>-</td>
</tr>
</tbody>
</table>

3. ENABLING TECHNOLOGIES

A set of breakthrough technologies has been identified that may greatly accelerate performance of high end computing. The particular strengths of each complement the others to deliver dramatic improvements in performance, storage capacity, bisection bandwidth, and power consumption. A brief description of the key
technologies being considered by the HTMT research project follows. Other technologies, not presented due to space limitations, are also being considered as possible alternatives.

3.1 Superconductor Digital Electronics

The potential of superconductor electronics for high speed digital computing has been pursued since the 1970s but until this decade the speed advantages were insufficient to warrant extensive investment. Early circuit designs mirrored digital circuit design of conventional transistor based logic gates delivering clock rates between 1 and 3 GHz. The development of the single flux quantum circuit using two Josephson junctions (JJ's) and an inductor created an alternative building block from which to devise digital logic. Enhancement of this approach provided rapid single flux quantum (RSFQ) logic with demonstrated clock rates for small circuits of 750 GHz and the potential for chip-wide clock speeds of 100 GHz or more [7, 9, 10]. Figure 3 shows two road maps of projected clock speeds [7]. The lower curve presents those taken from the SIA projections for CMOS technology while the upper curve is for Niobium based RSFQ logic over the same time period. It is clear that RSFQ technology will retain a two order of magnitude advantage in switching rate for the next decade.

Modest sized RSFQ chips of 1.5 to 2.5 micron feature size are routinely fabricated for military and industrial application incorporating a few thousands of gates per chip at most. Devices of 0.8 micron Niobium technology has been demonstrated in the laboratory that should permit 100 GHz clock speeds on chips containing 100K gates. Smaller feature sizes have been achieved for a few select devices as well. Inter-chip data transfer rates within MCM packages can be realized up to 30 Gbps while rates of 10 Gbps is achieved between MCMs.

A second property of superconductor RSFQ logic is its extraordinary low power consumption with respect to conventional CMOS technology. A gate operating at 100 GHz consumes 0.1 microwatts of power which is more than four orders of magnitude less energy per logical operation than required by CMOS. Even with the relatively inefficient refrigeration employed today to maintain the necessary cryogenic thermal environment for superconductivity, the power advantage is approximately a factor of a hundred.

3.2 Smart Memories

Semiconductor fabrication processes for logic and DRAM memory cells are significantly different ordinarily dictating that the two forms of functionality be implemented on separate integrated circuits. This dichotomy of manufacture methodology has perpetuated the separation of memory and processors referred to as the "von Neumann bottleneck." Recent advances in semiconductor processing has made possible the merger of logic and dynamic memory cells on the same die. Recent significant reduction in feature size and increase in die size has made it possible to dedicate some of the once precious die real estate to logic while retaining significant memory capacity.

Processor-in-memory or "PIM" technology [3, 16] offers a new dimension in computer system design providing an important alternative to the conventional processor/memory relationship of the last 50 years. PIM technology puts logic directly at or near the sense amps of the DRAM cell stack (Fig. 4). A data access cycle will acquire one entire row of the memory cell block at a time. Typically, this can be one or more thousand bits every 50 to 150 nanoseconds or faster for particular smaller sub-blocks. Including multiple blocks per chip that are separately accessible and accessing only a sub-block of the total available row can deliver between 100 and 200 Gbps on-chip sustained memory bandwidth. Because logic is directly connected to the row buffers, processing of the data at this rate under favorable conditions is possible due to the low latency interconnects on chip.

3.3 Optical Communication Network

Recent dramatic advances in optical communications technology offer the opportunity to implement system area networks (SAN) in optics for the first time [12, 13]. For next generation high end systems, total system data transfer rates may be required at hundreds of Terabits per second making use of electrical channels prohibitive both in terms of number of wires required and the power consumed. Per channel bandwidth
(TDM, single wavelength on a given fiber) is now feasible at 10 Gbps with the possibility of extending this by more than a factor of two in the next few years. More significant is the rapid developments in wave division multiplexing (WDM). It is now possible to employ 64 wavelengths simultaneously on the same fiber with the prospect of 256 or more wavelengths likely within a few years. The combination of TDM and WDM techniques can provide between 32 Gbps and 640 Gbps per fiber within the next couple of years while data rates in excess of a Tbps is envisioned in the not too distant future.

Routing of data packets among thousands of ports likely in very high end computer systems can require dynamic switching of in-flight packets in a short period of time (Fig. 5). Contention arbitration and packet routing through an optical network can be performed by a new generation of all-optical butterfly switches passing the optical data payload of a packet directly through the switch without intervening conversion to electrical and then back to optical. Only the packet header bits need be converted to electrical mode to control switching. These new switches allow rapid, low power, low cost, network nodes to be employed in large networks. Recent advances in electro-optic integration make possible multiple switching nodes on a single silicon substrate with direct fiber optic connectors. Nonlinear optical fiber loop mirror (NOLM) technology provide an all-optical data amplifier and cleaner to regenerate data as a result of power splitting occurring in the switch nodes. The combination of these technologies makes optical system area networks both feasible and advantageous for future high end computers.

3.4 Holographic 3/2 Memory

Holographic encoding of information has been understood for many decades but only recently has the use of such methods been employed for computer data storage and retrieval, principally for read only or write-once archival storage. Major advances in this field in the last few years has created new opportunities in high density low power storage [1, 2]. A planar spatial light modulator (SLM) forms an image of the data which produces a hologram in a layer of photo refractive material (Fig. 6). Later, a laser beam of the same wavelength and angle incident on the material will return the original data. Blocks of data of 1 to 4 Mbits can be stored or retrieved at one time. The rate at which data can be accessed is a function of the properties of the selector mechanism. The primary application for this technology has been to augment secondary storage permitting access time of a few milliseconds which could be achieved with mechanical deflection schemes. For use as a supplement to main memory, access times on the order of 10 microseconds or a hundred times faster is required. The likely approach is to incorporate a laser array such as a laser diode array or a Vertical Cavity Surface Emitting Laser (VCSEL) array combined with a lens to enable rapid page access simply by activating different lasers within the array.

4. ARCHITECTURE

The general approach, strategy, and justification for the HTMT system architecture and its operation were discussed in Section 2. Here, a summary of the system organization and the operational responsibilities of each of its comprising sub-elements is presented. The HTMT architecture may be viewed as an array of very high performance, low power processors driven by an intelligent memory hierarchy that supplies the processor array with a continuous stream of work and data, as shown in Figure 7. An alternative perspective is that the HTMT system is made up of the high performance low power processor array and a high capacity low power holographic memory array which are coupled and matched by means of an intervening system buffer management and communication subsystem, as shown in Figure 8. In either view, the HTMT architecture revolutionizes the relationship between memory and processors, reversing the roles of master and slave. Low cost processors near the memory (in the smart cache and DRAM) perform the low efficiency overhead functions of organizing, synchronizing, scheduling, and moving tasks and data between the high capacity storage and the high performance processors. The HTMT system structure is shown in Figure 1.

4.1 High Performance Processor

The processor architecture [6] is based on a simple multithreaded organization with a separate register bank dedicated to each thread of control (Fig. 9). The thread managers operate independently issuing instructions
with operands and fetching data and instructions from the high-speed memory buffers. Each processor includes between 2 and 6 pipelined floating-point units. A group of thread managers share a pipelined integer unit. The number of thread managers per processor depends on a number of factors and is determined by the average amount of processor latency that must be overcome. Each processor is provided with high speed buffer memory that takes the place of cache but is explicitly managed under program control. Each processor and its buffer memory is directly connected to one bank of the highest speed memory within the memory hierarchy. The processors are interconnected among themselves by the CNET, a high bandwidth Banyan network. Access to a specific bank of the memory hierarchy by a processor is through the C-net to the processor interface associated with the target bank. The use of ultra-fast logic imposes severe demands on processor structure [14, 15]. The dominant factors are:

Speed of light limitation: during a 10 ps. clock cycle (planned for the HTMT computer), a signal propagating with the effective speed of light can only be passed over a 1 mm distance, which is much less than the chip size necessary for petaflops-scale computing. In other words, this technology is relativistic: switching logic gates on the same chip are outside of each other's light cone.

Clock skew limitation: unless an extremely awkward and bulky hardware is used, clock skew across a few centimeter chip is comparable with or even larger than 10 ps. As a result, no global clock is practical, and computing even within one chip will be intrinsically asynchronous. In fact, the very notion of simultaneous events loses meaning, unless the events happen within a small local area.

These two features of RSFQ circuits make a pipelined organization and RISC-like instruction set architecture (ISA) the natural design choices for the RSFQ subsystem. An ultra-small clock cycle and pipelines with negligible hardware cost for latches provide an efficient way to achieve the planned ultra-high performance. However, both the pipeline and the RISC ISA concepts should be revised to reflect challenges imposed by the RSFQ technology. These challenges are:

- Small depth of each pipeline stage (ultimately, one level of logic).
- Comparable time for processing within one pipeline stage and communication among adjacent pipeline stages.

The first feature makes very long RSFQ pipelines unavoidable, while the second makes global synchronized communication within such pipelines impossible. The main problem to be solved is how to resolve data and control hazards for data paths. Very long pipelines and a lack of global synchronization make traditional approaches like data forwarding inapplicable for resolving data hazards. For the same reasons, speculative execution would be difficult to implement.

4.2 Smart Cache

The smart cache is a processor-in-memory part combining SRAM with a simple control processor. Each bank of the smart cache serves in part as a backing store for the very high speed buffer memory related to the associated processor. The smart cache also participates in the temporary high speed storage of the pages of data currently being accessed by one or more of the processors. This layer of memory has two interfaces. Each bank of the smart cache has one interface to its corresponding processor in the processor array and one interface to the Data Vortex optical network. The Smart Cache participates in gather/scatter operations and pointer chasing sequences without RSFQ processor intervention. It also engages in "percolation" to proactively pre-stage ready work for high speed processing.

4.3 PIM Main Memory

The main memory of the HTMT architecture is PIM based with several memory blocks and PIM processors per chip (Fig. 4). This PIM DRAM is internally multithreaded to support processing of one set of data while fetching another set from its local memory stack. The PIM chip is message driven. Packets, referred to as "parcels", acting in a manner similar to active messages may come from the high speed processors, the smart cache, or other main memory chips. These parcels, once dispatched, invoke a simple operation or small code fragment to carry out some task on stored data. The PIM main memory supports
two interfaces: one to the data vortex network connecting it to all other main memory chips and the smart cache, and the other interface connecting it to one of the holographic storage modules. The capacity of the PIM main memory chip depends on the technology in which it is implemented. Today, 0.25 micron parts can provide 8 to 16 megabytes of storage with processing logic.

4.4 Data Vortex Optical Network

The Data Vortex optical network and its opto-electronic subsystems are specifically designed to form the communications infrastructure between the SRAM and DRAM levels in the memory hierarchy [12]. The network employs multiple node levels with a routing topology that is based on a minimum logic at the node scheme. This architecture is unique in its reduction of time-of-flight latency between communications ports, with a network that is absolutely transparent and can scale to interconnect an ultra-high performance computing system in a massively parallel form.

In the Data Vortex topology (Fig. 10), the network nodes lie on a collection of concentric cylinders. Data is injected into the outermost cylinder and emerges from the innermost cylinder. The data packets flow around the cylinders on prescribed paths and drop from the larger outer cylinders to the smaller inner cylinders. Each time that a packet drops down one cylinder, another bit of its target header is fixed. There are multiple paths between source and target, and the data flow is designed such that upon deflection packets will continuously drop into open paths. When a packet is deflected, it will be in a position to progress toward its target in two clock cycles. That is, after bouncing through only two nodes, the packet recovers its intended vector along another path. The packets on the smaller, inner cylinders have precedence over packets on the outer cylinders. In this way, the topology provides probabilistic preference to data that has been in the network longer. In order for the logic at a node to be kept to a minimum contention resolution must be avoided. Therefore, the network was designed such that only one message can enter a node in a given clock cycle.

Control messages pass between nodes before the packet arrives at a given node, to establish the right of way. Specifically, a node, A, on cylinder, C, has two input ports: one from a node B on the same cylinder, C and one from a node G on the cylinder one level higher than C. A message passing from B to A, causes a signal to be sent from B to G that blocks data at G from progressing to A. The network has no buffers, however the network itself acts as a buffer. Messages are never lost. If there is congestion at an output buffer, the data waiting to leave that buffer circulates around the lower cylinders and thus is optimally positioned to exit immediately as soon as the output ports are free. The data payload of the packet is passed purely optically; that is, there is no electro-optical conversion and therefore no active parts. As a result, latencies through the network even connecting thousands of ports will be below 100 nanosecond, even under heavily loaded conditions. The Data Vortex also uses some of its ports to provide access to secondary storage (disks) and general I/O facilities.

4.5 Holographic Optical Storage

The full storage capacity of the HTMT system (Fig. 6) is provided by a level of memory hierarchy not ordinarily found in conventional systems. This "3/2" memory lies between main or primary memory and secondary storage. While the access times for this technology are approximately two orders of magnitude longer than that for main memory, because the block size delivered each access is 1 to 2 Mbps, the bandwidth is very high at approximately 100 Gbps per storage module. The earliest such modules may contain approximately 1 Gigabyte of storage each although technology advances are expected to increase this by at least a factor of 10 in three years [2]. Nonetheless, this is about 100 times the memory capacity of the PIM Main Memory chip using contemporary fabrication. Each holographic storage module [2] is controlled by a PIM chip which serves as its temporary buffer.

4.6 Runtime Adaptive Resource Management

Two levels of multithreading are employed to manage latency for high efficiency of processor operation. The latency across the processor array and between processors and the smart cache is hidden by fast context switching fine grain thread control. But this mechanism can not work effectively for latencies
across the Data Vortex to the PIM DRAM main memory or 3/2 holographic storage. Instead, an innovative approach is employed that accomplishes the pre-staging of almost all data associated with active tasks in the smart cache. This approach, referred to as "percolation" [17] is described in some detail here and is represented by Figure 11.

4.6.1 Parcels Concept

Under the HTMT programming mode, a region of code may be declared as a parcel function. When a parcel function is invoked, it becomes ready for execution once the code and data it requires have been moved near the processors. When a parcel function finishes its execution, it needs to be retired from the fast memory, releasing the resources it used there. This process is called percolation.

4.6.2 Percolation Model

As shown in Figure 11, the runtime system running in the PIM consists of three components:

- the Parcel Invocation and Termination Module (PIT)
- the Parcel Assembly and Disassembly Module (PAD)
- the Parcel Dispatcher and Dispenser Module (PDD)

There are also various concurrent data structures to connect these units; we call them the I-queue, T-queue, A-queue, and D-queue.

The main role of the PIT invocation manager is to detect if a parcel function has become enabled, i.e. whether all its dependencies have been satisfied. The invocation manager will invoke enabled parcel functions we will call them simply parcels from here on and put them in the I-queue.

The PAD module will take enabled parcels from the I-queue and prepare them for further percolation. The role of the PAD assembly manager is to move the required code and data into local SRAM locations. At the same time, the data should be organized into desired structure (via gather/scatter, generalized "corner turn", permutation, pointer swizzling, etc.). This usually involves data movement from DRAM into SRAM through special PIM operations via the DMA channel between DRAM and SRAM as shown in the figure. Once the assembly process is completed, a parcel is passed on to the next stage by entering it into the A-queue.

The PDD module selects parcels from the A-queue and moves them further up to the cryogenic region. The role of the PDD manager is to first reserve space in the CRAM region and then move the data and code associated with the parcel into the reserved region. This movement uses the DMA channel between SRAM and CRAM. After this is completed, the parcel has completed its percolation process and can start execution in the cryogenic region once the superconducting processing resource become available.

After a parcel finishes its execution in the cryogenic region, it needs to be retired from it. This is begun by the PDD dispenser manager. A completed parcel has its return data (if any) structured and stored in the C-buffer for post-processing. The dispenser copies the C-buffer to SRAM and immediately de-allocates the CRAM resource reserved by the parcel. It then enters the parcel into the D-queue.

The PAD disassembly manager processes the parcels from the D-queue, disassembling and distributing output data into its proper places. It then releases the SRAM space occupied by the C-buffer copy. When the disassembly process is finished, the parcel is entered into the T-queue for the final termination service.

The PIT module will take parcels from the T-queue for termination processing. The role of the PIT termination manager is to inform the dependent successor parcels that the parcel under consideration has completed its execution. This may cause its successors to become enabled the beginning of another percolation process.
5. PHYSICAL SYSTEM DESCRIPTION AND SPECIFICATION

The HTMT research project has conducted extensive quantitative analysis of the key physical properties of the proposed system. The important finding of this work is the eminent feasibility of achieving petaflops scale computer systems on or prior to the year 2007, possibly as early as 2004. While the projected system is larger than even the most substantial commercial MPP acknowledged in the open community, HTMT requires at most a factor of three to four in its principle physical parameters while extending performance by three orders of magnitude.

5.1 Overall Layout

The challenges in building the HTMT system are many fold. Many technologies, such as the superconductor processor and data vortex, have never been fielded before in a large scale computer and so manufacture and availability issues remain to be seen. Another is in locating all the sub-system elements physically near each other to minimize interconnect delays while removing heat dissipation from all the parts confined to a small volume. Fortunately, the active latency management feature of the HTMT architecture permits progressively greater flexibility in placing components as signals propagate from the superconductor core to the HRAM memory sub-system. The superconductor core and its interconnection to the SRAM are perhaps the most critical in this regard.

Shown in Figure 12 is a cross-section view of the HTMT system. Each sub-system has been arranged between its nearest neighbors as concentric cylinders. This maintains the same latency patterns through any radial slice emanating from the cryostat core. It also keeps the fiber link segments on the data vortex network (which also forms a cylindrical topology) minimal length as well. Each sub-system is vertically tiered in height to permit easy access (or egress of drawers) to sub-system cards and rack modules. It also allows for cryostat plumbing to be directly routed from the bottom of the cryostat directly into the basement, which houses the condensers, circulation pumps, data vortex pump laser, and power sub-station step down converters. The 1.5-m diameter cryostat houses all 4096 RSFQ processor elements and a CNET internal network backplane that provides communication between processors and the external PIM SRAM sub-system just outside [11]. The cryostat actually contains two chambers: a cylindrical chamber operating at 4 degrees K (liquid Helium) for the RSFQ processor electronics surrounded by a second cylindrical shell operating at 77 degrees K (liquid Nitrogen) that houses the cryostat bulkhead interface electronics and also provides two-stage cooling for the inner core. The entire HTMT machine would fit into approximately a 30x30x20 ft room.

5.2 Power Consumption and Heat Removal

A breakdown of the HTMT power consumption by sub-system is shown in a table in Figure 13. The memory (1TB SRAM: 80KW, 16TB DRAM: 16KW, 1PB HRAM: 48KW) and the cryostat electronics (400KW, even after taking into account the cooling pumps) are not the highest power consumers. The 10PB disk arrays consume over 1.5MW. Typical systems might require up to ten times this amount of storage (100PB), requiring proportionally greater power consumed. However, one method of reducing this figure somewhat is to only power cycle disk drives on that are associated with active jobs. The power consumption of external data management support equipment (e.g., servers, tape robots farms, network center hubs, system fault monitors) are likely to be small -- well under 100KW. The total system power consumption is estimated to be about 2.6MW.

5.3 System Interconnects

Even though the physical size of the HTMT system is only moderate, a large number of interconnects is required between sub-systems to support the very high cross section bandwidths (Fig. 14) that prevent processor stalling or network congestion. The most challenging is the cryostat interface that must support at least 8 million wires over a relatively small surface area. Further complicating the problem is that the cryostat heat load must be kept at a low level to keep refrigeration costs at a reasonable level. Toward this end, a number of novel methods are being explored, such as using optical fibers into the cryostat (where the bandwidth is needed) and copper wires going out (where lower bandwidths are suitable and cryogenic light
sources are difficult to come by). Other areas where the degree of parallelism increases the wire count is in the HRAM interface where over a thousand channels are active at any one memory cycle, implying over 80 million connections. However, if the HRAM is closely integrated with the DRAM, virtually all of these connections will be within a multi-chip module (MCM) dramatically reducing the assembly complexity.

5.4 System Fault Protection and Diagnosis

A system with a large number of parts, interconnects, and memory should have a well integrated real-time fault management system that can detect and correct as many errors and faults dynamically without forcing a complete system halt. Such graceful degradation is, in fact, mandatory where either long job runtimes or real-time 24x7 up time is required for periods approaching preventive maintenance intervals. HTMT’s complexity suggests that fault diagnosis, repair, and replacement/reconfiguration be included at all levels of the system to enhance reliability, e.g., ICs, MCMs, boards, chassis, interconnects, networks, and storage. For example, transient and permanent in-situ (self-test) error detection/correction should be included in the PIM memories, the data vortex network, and some sub-system interfaces. A fault executive residing on a separate host is envisioned that will perform sub-system error detection/ correction/ reconfiguration, conduct post-mortem memory dumps, and identify permanent as well as transient errors via both software and hardware probes. This suggests a separate nervous system network for the fault monitor. New tools will also be needed in the applications to perform parallel debugging, loop detection, memory protection, deadlock detection, and memory leaks/garbage collection. Finally, due the high power levels and flow rates in the system, the fault executive will also be responsible for monitoring hazards such as chemical and gas leaks, power faults, circuit breakers, overheating, and unexpected power shutdowns.

5.5 External Data Management System

The external data management system will include a larger highly parallel file server capable of transferring about 1TB/s to/from 10-100PB disk farms. This allows most jobs to be migrated in less than one hour. A variety of commercial server systems can be used here ranging from commodity Beowulf PC clusters to high end workstations. Tertiary storage is also an issue, with present 300TB tape robots far too low in capacity and transfer speed to be cost effective (over 400 would be needed to achieve 100PB storage and 1TB/s transfer rates). One promising technology in this area is the Write Once Read Mostly (WORM) optical tape which holds over 1TB per tape. Such a technology would permit 100PB to be stored in about 20 tape robots. About 10,000 fiber channel networks would be required to interconnect the disk and tape farms at TB/s rates. External wide area network connections offer direct connections to the server arrays as well as the HTMT system proper so that users can prepare applications concurrently with executing jobs. Depending on the external needs, this might start at 4 GB/s (4 x OC-192 ATM) and go upward.

6. CONCLUSIONS

The HTMT architecture research project is among the most ambitious and detailed investigations ever conducted in the regime of petaflops performance computing. This research has provided the first in-depth quantitative description of a petaflops computer using experimental technologies to significantly improve the cost, power, and time to delivery of petaflops class systems with respect to conventional technology approaches. Nonetheless, challenges remain to the final accomplishment of defining a petaflops computer based on the HTMT approach. Percolation, an aggressive proactive dynamic methodology for managing large latencies through PIM memory support functions, has yet to be attempted on any system although an experiment of this is underway. The critical enabling technologies of superconductor RSFQ, integrated electro-optic packet switched networking, and rapid access holographic storage have never been demonstrated in an operational computer and therefore have yet to be demonstrated as viable components for real world systems. The balance of processing resources, communications bandwidth, and memory capacity reflected by the proposed petaflops HTMT architecture has not been validated against applications, although a study combining empirical measurements and projection models is being conducted.

The immediate tasks to be performed are all intended to reduce risk prior to the development of a full scale system by verifying and evaluating all aspects of the HTMT architecture approach. A distributed
"isomorphic simulator" is planned to model the functionality of each element of the HTMT system and its runtime environment for task scheduling and data migration. This will test the correctness of the distributed hardware and low level software providing an executable specification for the entire system. Although a significant undertaking in its own right, a small prototype testbed must be designed and implemented to demonstrate the feasibility of each of the comprising advanced technology devices and their integration into a robust computing system. A higher fidelity understanding of resource requirements under real workloads must be acquired through detailed studies of full applications prior to committing to a specific system configuration.

ACKNOWLEDGMENTS

The results of the HTMT research project are the product of 12 teams and 70 contributors. Space precludes explicitly crediting all individuals and here we respectfully identify the principle investigators and team leaders. These include Konstantin Likharev and Mikhail Dorojevets of SUNY Stonybrook, Guang Gao of the University of Delaware, Peter Kogge, Vince Freeh, and Jay Brockman of the University of Notre Dame, Burton Smith of Tera Computer Company, Keren Bergman of Princeton University, Coke Reed of the Institute of Defense Analysis, Demetri Psaltis of the California Institute of Technology, Rick Stevens of Argonne National Laboratory, Loring Craymer of NASA Jet Propulsion Laboratory, Arnold Silver and Lynn Abelson of TRW, Elie Track of Hypres, Marc Feldman of University of Rochester, Phil Merkey of the NASA Goddard Space Flight Center and Paul Messina of the California Institute of Technology. While not a formal task of the HTMT project, this research has benefited greatly from the DARPA sponsored DIVA PIM project led by John Granacki and Mary Hall of the USC Information Sciences Institute. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Science Foundation, the Defense Advanced Research Projects Agency, the National Security Agency, and the National Aeronautics and Space Administration.

REFERENCES

Fig. 1 - The HTMT architecture consists of a hierarchical stack of progressively faster intelligent memory sub-systems (from bottom to top) that ultimately deliver data and active execution threads to the main superconductor processor arrays. This arrangement enables the method of thread percolation to be used by the intelligent memory systems to actively manage latency, i.e. active threads percolate up quickly as they are needed while stale (older not recently used) threads drift down to slower memory. The data vortex optical network provides a high speed low latency communication paths between all the room temperature memory systems.
Fig. 2 - HTMT bisection bandwidth as a function of sub-system. The critical path between high speed processors and high capacity storage is shown including peak bandwidths between each stage.
Fig. 3 - A comparison of the future speed estimates for low-TC RSFQ superconductor electronics with the Silicon Industry Association (SIA) forecast for silicon CMOS electronics.
Fig. 4 - Processor in Memory (PIM) architecture. Processing logic is located near the row sense amplifiers of the memory stack for low latency and high bandwidth computing on the memory chip. Multiple on-chip processors may operate simultaneously on separate memory stacks.
Architecture

Fig. 5 - The optical component technology of the data vortex network is shown for the transmitter (left), switching network (center), and receiver (right). The transmitter consists of a 10Gb/s mode locked laser that generates 64 x 10 Gb/s multi-wavelength optical pulse streams, each one separately modulated by a data source. This pulse ensemble is launched into the network comprised of an array of 2x2 LiNbO$_3$ optical switches that deflection routes each packet to the next switching node without reading (i.e., converting to electrical form) the data packet. Arriving at the output, each wavelength channel is individually read by a separate optical receiver.
Performance Scaling

<table>
<thead>
<tr>
<th></th>
<th>1998</th>
<th>2001</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module capacity</td>
<td>1 Gbit</td>
<td>1 GB</td>
<td>10 GB</td>
</tr>
<tr>
<td>Number of modules</td>
<td>10^3</td>
<td>10^3</td>
<td>10^3</td>
</tr>
<tr>
<td>Access time</td>
<td>1 ms</td>
<td>100 µs</td>
<td>10 µs</td>
</tr>
<tr>
<td>Readout bandwidth</td>
<td>1 Gb/s</td>
<td>.1 PB/s</td>
<td>1 PB/s</td>
</tr>
<tr>
<td>Record bandwidth</td>
<td>1 Mb/s</td>
<td>1 GB/s</td>
<td>.1 PB/s</td>
</tr>
</tbody>
</table>

Advantages
- petabyte memory
- competitive cost
- 10 msec access time
- low power
- efficient interface to DRAM

Disadvantages
- recording rate is slower than the readout rate for LiNbO$_3$
- recording must be done in GB chunks
- long term trend favors DRAM unless new materials and lasers are used

Fig. 6 - Holographic Optical RAM. The HRAM represents an intermediate storage layer (3/2) lying between DRAM and magnetic disk.
Fig. 7 - Memory driven processor array. The HTMT architecture can be viewed as a stack of very high speed server processors driven by an intelligent memory system.

Fig. 8 - Coupling very high speed processors to very high capacity storage. The HTMT architecture can be viewed as an array of high speed processors and corresponding high capacity/bandwidth storage array interfaced by means of an intelligent data/task management sub-system.
Fig. 9 - RSFQ processor architecture. The processor architecture with 10ps internal clock cycle time manages a number of threads simultaneously by overlapping memory access and ALU pipeline latencies of many threads for high sustained performance and efficiency.
Fig. 10 - The topology of the data vortex optical fiber network. Data packets are launched into the network on the outer ring by either the SRAM or DRAM memory subsystems and then propagate toward the center where they exit. In periods of high congestion, packets may be deferred to live on an intermediate ring longer. A hot potato (defective routing) protocol is used to minimize latency at each switch node, so that, worse case, the number of hops to reach a destination is between 13 and 23. The bisection bandwidth is greater than 4Pbps for a network designed for 6,250 input ports with each port bandwidth sustaining 640Gbps.
Fig. 11 - HTMT Percolation Model. The proactive pre-staging of ready multi-threaded tasks near the RSFQ processors in the high speed CRAM and smart cache memories. Task allocation and migration are performed between the PIM-DRAM main memory and smart cache without RSFQ processor intervention which works only on tasks and data provided by the memory system.
Fig. 12 - A cross section of the physical layout of the HTMT system showing the cryostat contained RSFQ superconductor electronics (liquid helium cooled to 4 degrees K), PIM-SRAM, data vortex optical interconnect network, PIM-DRAM, and the HRAM. All the cabinets of each tier are arrangement in a circle and stepped in height with its adjacent neighbors to permit easy access for maintenance and for routing of cooling ducts. This arrangement also minimizes interconnect latency, which is especially important between the RSFQ processor and PIM-SRAM.
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Cyrostat/SPELL</td>
<td>1 + sm 1</td>
<td>4K SPELL, 4GB CRAM</td>
<td>250W</td>
</tr>
<tr>
<td>2. SRAM</td>
<td>8 cab</td>
<td>1TB</td>
<td>80KW</td>
</tr>
<tr>
<td>3. Data Vortex</td>
<td>16 cab</td>
<td>16TB</td>
<td>16KW</td>
</tr>
<tr>
<td>4. DRAM</td>
<td>16 cab</td>
<td>16TB</td>
<td>16KW</td>
</tr>
<tr>
<td>5. HRAM incl.</td>
<td>1PB</td>
<td>48KW</td>
<td></td>
</tr>
<tr>
<td>6. Primary Disk</td>
<td>100K</td>
<td>10PB</td>
<td>1,500KW</td>
</tr>
<tr>
<td>7. Secondary Disk</td>
<td>1M max</td>
<td>100PB</td>
<td>150KW (1% on)</td>
</tr>
<tr>
<td>8. Tape Backup</td>
<td>20 robot</td>
<td>100PB WORM</td>
<td>20KW</td>
</tr>
<tr>
<td>9. Cooling Loops</td>
<td>5</td>
<td>He, N, HVAC</td>
<td>400KW</td>
</tr>
<tr>
<td>10. Vacuum System</td>
<td>1</td>
<td>cryostat only (6 turbo pump)</td>
<td>10KW</td>
</tr>
<tr>
<td>11. System Mon/Cntrl</td>
<td>5</td>
<td>power, temp, pressure, volt, safety</td>
<td></td>
</tr>
<tr>
<td>12. Server (20 node)</td>
<td>20 Beowulf</td>
<td></td>
<td>10KW</td>
</tr>
<tr>
<td>13. Power Distribution</td>
<td>50 PDUs</td>
<td>50KW ea</td>
<td></td>
</tr>
<tr>
<td>14. Test Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Center Networks</td>
<td></td>
<td>10K FC, OC-192 x 4 ATM</td>
<td>5KW</td>
</tr>
</tbody>
</table>

2.6MW

Fig. 13 - HTMT system parts list and power consumption.
<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Interface to</th>
<th>Wires/Port</th>
<th>Speed/Wire (bps)</th>
<th>#ports</th>
<th>Aggregate BW (Byte/s)</th>
<th>Wire count</th>
<th>type of IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSFQ</td>
<td>SRAM</td>
<td>16000</td>
<td>20.0E+9</td>
<td>512</td>
<td>20.5E+15</td>
<td>8.2E+6</td>
<td>wire</td>
</tr>
<tr>
<td>SRAM</td>
<td>RSFQ</td>
<td>1000</td>
<td>2.0E+9</td>
<td>8000</td>
<td>2.0E+15</td>
<td>8.0E+6</td>
<td>TBD</td>
</tr>
<tr>
<td>SRAM</td>
<td>Data Vortex</td>
<td>1000</td>
<td>2.0E+9</td>
<td>8000</td>
<td>2.0E+15</td>
<td>8.0E+6</td>
<td>wire</td>
</tr>
<tr>
<td>Data Vortex</td>
<td>SRAM</td>
<td>1</td>
<td>640.0E+9</td>
<td>2048</td>
<td>163.8E+12</td>
<td>2.0E+3</td>
<td>fiber</td>
</tr>
<tr>
<td>Data Vortex</td>
<td>DRAM</td>
<td>1</td>
<td>640.0E+9</td>
<td>2048</td>
<td>163.8E+12</td>
<td>2.0E+3</td>
<td>fiber</td>
</tr>
<tr>
<td>DRAM</td>
<td>Data Vortex</td>
<td>1000</td>
<td>1.0E+9</td>
<td>33000</td>
<td>4.1E+15</td>
<td>33.0E+6</td>
<td>wire</td>
</tr>
<tr>
<td>DRAM</td>
<td>HRAM</td>
<td>1000</td>
<td>1.0E+9</td>
<td>33000</td>
<td>4.1E+15</td>
<td>33.0E+6</td>
<td>wire</td>
</tr>
<tr>
<td>DRAM</td>
<td>Server</td>
<td>1</td>
<td>800.0E+6</td>
<td>1000</td>
<td>100.0E+9</td>
<td>1.0E+3</td>
<td>wire</td>
</tr>
<tr>
<td>Server</td>
<td>DRAM</td>
<td>1</td>
<td>800.0E+6</td>
<td>1000</td>
<td>100.0E+9</td>
<td>1.0E+3</td>
<td>(fiber channel)</td>
</tr>
<tr>
<td>Server</td>
<td>Disk</td>
<td>1</td>
<td>800.0E+6</td>
<td>1000</td>
<td>100.0E+9</td>
<td>1.0E+3</td>
<td>(fiber channel)</td>
</tr>
<tr>
<td>Server</td>
<td>Tape</td>
<td>1</td>
<td>800.0E+6</td>
<td>200</td>
<td>20.0E+9</td>
<td>200.0E+0</td>
<td>(fiber channel)</td>
</tr>
<tr>
<td>HRAM</td>
<td>DRAM</td>
<td>800</td>
<td>100.0E+6</td>
<td>1.00E+05</td>
<td>1.0E+15</td>
<td>80.0E+6</td>
<td>wire</td>
</tr>
</tbody>
</table>

Fig. 14 - Table of interconnects between each sub-system.