Quiz 6 Solutions

Problem 1 A weighted coin with \(p(H) = \frac{2}{3} \) is tossed 20 times. Determine the probability \(p \) that the numbers of heads occurring is between 12 and 15 by

i) Using the binomial distribution

Solution

\[
\begin{align*}
b(12;20,2/3) &= \binom{20}{12} \left(\frac{2}{3} \right)^{12} \left(\frac{1}{3} \right)^8 \\
b(13;20,2/3) &= \binom{20}{13} \left(\frac{2}{3} \right)^{12} \left(\frac{1}{3} \right)^8 \\
b(14;20,2/3) &= \binom{20}{14} \left(\frac{2}{3} \right)^{12} \left(\frac{1}{3} \right)^8 \\
b(15;20,2/3) &= \binom{20}{15} \left(\frac{2}{3} \right)^{12} \left(\frac{1}{3} \right)^8 \\
p &= b(12;20,2/3) + b(13;20,2/3) + b(14;20,2/3) + b(15;20,2/3)
\end{align*}
\]

ii) Using the normal approximation to the binomial distribution

Solution

\[
\begin{align*}
\mu &= np = 20 \cdot \left(\frac{2}{3} \right) = 13.3 \\
\tau &= \sqrt{npq} = \sqrt{20 \cdot \frac{1}{3} \cdot \frac{2}{3}} = 2.1
\end{align*}
\]

\[
p \approx p(11.5 \leq X \leq 15.5) \\
\begin{align*}
&= p\left(\frac{11.5 - 13.3}{2.1} \leq X^* \leq \frac{15.5 - 13.3}{2.1} \right) \\
&= p\left(-0.86 \leq X^* \leq 1.05 \right) \\
&= p\left(-0.86 \leq X^* \leq 0 \right) + p\left(0 \leq X^* \leq 1.05 \right) \\
&= p\left(0 \leq X^* \leq 0.86 \right) + p\left(0 \leq X^* \leq 1.05 \right) \\
&= 0.3051 + 0.3531 = 0.6582
\end{align*}
\]
i) What does this problem imply about the normal approximation.

Solution

Since \(p \) and \(q \) are both away from zero, and \(n \) is large enough (in comparison) the normal distribution is a good approximation of the binomial distribution.

Problem 2 170 students take an exam. Suppose the scores are normally distributed with mean 62 and standard deviation 4 points. If 90 is an A, 80 is a B ... and 49 and below is a failing F, determine how many people get A's. Also determine how many people fail.

Solution

\[
p(X \geq 90) = P(X^* \geq \frac{90 - 62}{4}) = P(X^* \geq 7) = 0
\]

No students gets an A. Similarly

\[
p(X \leq 49) = P(X^* \leq \frac{49 - 62}{4}) = P(X^* \leq -3.25) = 0.5 - P(0 \leq X^* \leq 3.25) = 0.0006
\]

Thus, the number of people who fail is \(170 \cdot 0.0006 = 0.1 \). No students gets a failing grade.

Problem 3 Suppose that there are 250 misprints distributed randomly throughout a book that is 225 pages. Find the probability that:

1) a given page has no misprint.

Solution

Your text propose in that case that a poisson approximation be used with \(n = 500 \), and \(p = 1/225 \) so

\(\lambda = \frac{500}{225} = 1.1 \)

\[
p(0; 1.1) = \frac{(1.1)^0 e^{-1.1}}{0!} = e^{-1.1} \approx 0.333
\]

2) a given page has 2 misprints.

Solution

\[
p(2; 1.1) = \frac{(1.1)^2 e^{-1.1}}{2!} \approx 0.201
\]