Problem 1: Flag Complex

The goal of this problem is to prove that the Flag Complex of \mathbb{F}_q^d is a one-sided $O\left(\sqrt{\frac{1}{d}}\right)$-spectral expander so long as $d \ll \sqrt{q}$. Recall from the notes:

Definition (Flag Complex on \mathbb{F}_q^d). Let q be a prime power. A **complete flag** of \mathbb{F}_q^d is a strict containment sequence of $d-1$ subspaces $\{0\} \subset V_1 \subset \ldots \subset V_{d-1} \subset \mathbb{F}_q^d$. Let $Gr(d,q)$ denote the set of subspaces of \mathbb{F}_q^d of any dimension. The Flag Complex on \mathbb{F}_q^d is the $(d-1)$-dimensional simplicial complex on vertex set $Gr(d,q)$ whose top level faces are given by the complete flags.

Part (a): Bipartite Spectral Expanders

The Flag Complex can be viewed as a multipartite complex. It will therefore be useful to understand some properties of bipartite spectral expanders to start. Given a bipartite graph $G = (L, R, E)$, let

$$M = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$

be the (square) adjacency matrix indexed by $L \cup R$. In the next part, we will see that it is easier to analyze the spectrum of the two-step random walks $A^T A$ and AA^T rather than M directly. In this part, you will show the two are closely related. In particular, show that:

1. If λ is an eigenvalue of M, then λ^2 is an eigenvalue of $A^T A$ and AA^T.
2. If $\lambda \neq 0$ is an eigenvalue of $A^T A$ or AA^T, then $\pm \sqrt{\lambda}$ are eigenvalues of M.

Part (b): Flag Complex in Two Dimensions

Next, we analyze the Flag Complex of \mathbb{F}_q^3, which is a bipartite graph $G = (L, R, E)$ where L is given by the set of lines in \mathbb{F}_q^3 (1-dimensional subspaces, generated by a nonzero element) and R is the set of planes (2-dimensional subspaces, generated by a pair of nonzero elements which are not a multiple of each other). We will analyze G through the two-step random walk from lines to planes to lines.

1. Prove that there are $q^2 + q + 1$ distinct lines and $q^2 + q + 1$ distinct planes in \mathbb{F}_q^3.
2. Prove that every plane contains $q + 1$ distinct lines, and every line is adjacent to $q + 1$ distinct planes.
3. Using these facts, prove that the two-step walk $A^T A$ has the following form:

$$A^T A = \frac{q}{(q+1)^2} I + \frac{1}{(q+1)^2} J$$

where I is the identity matrix and J is the all ones matrix.
4. Combine this with Part (a) to prove that G is a one-sided $\frac{1}{\sqrt{q}}$-spectral expander.
Part (c): Flag Complex in \(d \) dimensions

We are ready to prove the main result. By Oppenheim’s theorem, it is enough to prove that all links are connected and that \((d-3)\)-links are good one-sided expanders. Let’s start by proving every link of dimension less than \(d - 3 \) is connected (OPTIONAL\(^1\)). We break the proof into two parts:

1. Prove that \(X_\emptyset \) is connected.
2. Given \(j > 2 \) and \(\sigma \in X(d-j-1) \), let \(i_1 \leq \ldots \leq i_j \) denote the dimensions missing from \(\sigma \).
 (a) Prove that if there exists a gap, i.e. \(\ell \) such that \(i_\ell + 1 < i_{\ell+1} \), \(X_\sigma \) is connected.
 (b) Otherwise, prove the link is connected by reducing to 1.

We now turn our attention to \((d-3)\)-links (REQUIRED). Every \(\sigma \in X(d-3) \) has the following structure:

\[
\sigma = \{ V_1 \subset V_2 \subset \ldots \subset V_{i-1} \subset V_{i+1} \subset \ldots \subset V_{j-1} \subset V_{j+1} \subset \ldots \subset \mathbb{F}_q^d \},
\]

i.e. a complete flag missing two arbitrary subspaces of dimensions \(i \) and \(j \). There are two cases of interest:

1. Prove that when \(j = i + 1 \), \(X_\sigma \) is isomorphic to the 2-dimensional Flag Complex (hint: first consider \(i = 1, j = 2 \), then try to reduce general \(i, j \) to this case).
2. Prove that when \(j > i + 1 \), \(X_\sigma \) is a complete bipartite graph with \(q + 1 \) vertices on each side.

Finally, assuming \(d \ll \sqrt{q} \), combine these facts with Part (b) to prove that the flag complex on \(\mathbb{F}_q^d \) is a one-sided \(O\left(\sqrt{\frac{1}{q}}\right) \)-spectral expander.

Problem 2: Oppenheim’s Theorem

Prove Oppenheim’s Trickling-down Theorem for two-sided local spectral expanders. That is:

Theorem (Oppenheim’s Trickling Down Theorem). Let \((X, \Pi)\) be a \(d \)-dimensional weighted simplicial complex satisfying the following two properties:

1. Every link of dimension \(d - 2 \) is a two-sided \(\gamma \)-spectral expander
2. Every link of dimension \(\leq d - 2 \) is connected.

Then \((X, \Pi)\) is a two-sided \(\frac{2}{1-(d-2)\gamma} \)-local spectral expander.

In fact, it’s possible to prove a stronger result: negative eigenvalues actually improve through trickle-down!

Bonus Problem (no points): Let \(X \) be a 3-dimensional complex. Prove that if the smallest negative eigenvalue across 1-links is \(\eta \), then the smallest negative eigenvalue of the graph underlying \(X \) is at least \(\frac{\eta}{1-\eta} > \eta \).

Notice that this lets us turn one-sided local-spectral expanders into two-sided local-spectral expanders just by truncating the complex at some dimension \(k \ll d \)!

\(^1\)You may choose skip this part and assume the links are connected without proof

\(^2\)By definition, \(\sigma \) is a partial flag (a complete flag with some subspaces removed). A dimension is “missing” if its corresponding subspace has been removed.