1. Introduction: Capacitive Loads

- Consider the two possible cases:
 - \(Q = 0 \): then \(Q' = 1 \) and \(Q = 0 \) (consistent)
 - \(Q = 1 \): then \(Q' = 0 \) and \(Q = 1 \) (consistent)
- Bistable circuit stores 1 bit of state in the state variable, \(Q \) (or \(Q' \))
- Hold the value due to capacitive charges and feedback loop strengthening
- But there are **no inputs to control the state**

Example

Q. Given a memory component made out of a loop of inverters, the number of inverters in the loop has to be
A. Even
B. Odd
C. No constraints

2. Basic Building Blocks

- Word line (WL) to access cell
- Read – measure voltage difference between B+ and B-
- Write – force values of B+ and B- which may flip the cell
- Static Random Access Memory - SRAM

Metal bolt lock or unlock the door

- Latches (Level Sensitive)
 - SR Latches, D Latches
- Flip-Flops (Edge Triggered)
 - D FFs, (JK FFs, T FFs)
- Examples of Memory Modules
 - Registers, Shift Registers, Pattern Recognizers, Counters, FIFOs
2. Basic Building Blocks: Flight attendant call button

- Flight attendant call button
 - Press call: light turns on
 - Stays on after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

- SR latch implementation
 - Call=1: sets Q to 1 and keeps it at 1
 - Cancel=1: resets Q to 0

2. Basic Building Blocks: SR (Set/Reset) Latch

- SR Latch

- Consider the four possible cases:
 - $S = 1, R = 0$
 - $S = 0, R = 1$
 - $S = 0, R = 0$
 - $S = 1, R = 1$

2. Basic Building Blocks: SR Latch Analysis

- $S = 1, R = 0$: then $Q = 1$ and $\overline{Q} = 0$

- $S = 0, R = 1$: then $Q = 0$ and $\overline{Q} = 1$

- $S = 1, R = 1$: then $Q = 0$ and $\overline{Q} = 0$
2. Basic Building Blocks: SR Latch

\[y = (S + Q)' \]
\[Q = (R + y)' \]

Inputs: S, R
State: (Q, y)

```
SR Qy
00 01
01 10
10 10
```

Truth table of SR latch with incremental steps in time

```
Not State = Present State
```

cases:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR=00: (Q,y) does not change if (Q,y) = (1,0) or (0,1)
However, when (Q,y) = (0,0) or (1,1), the output keeps changing

Remark: To verify the design, we need to enumerate all combinations.

"State Table" of SR latch

```
<table>
<thead>
<tr>
<th>Sr</th>
<th>Qy</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>01</td>
<td>11</td>
</tr>
</tbody>
</table>
```
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing

Q. Suppose that we can set the initial state (Q,y)=(0,1). To avoid the SR latch output from toggling or behaving in an undefined way which input combinations should be avoided:
A. (S, R) = (0, 0)
B. (S, R) = (1, 1)
C. None of the above

We set the initial state (Q,y)=(0,1) or (1,0). To avoid the state (Q,y)=(0,0) or (1,1), we block the input SR=11.
Thus, without input SR=11, the state can only be (Q,y)=(0,1) or (1,0).

The only way to reach state (Q,y)=(0,0) or (1,1) is via edge labeled SR=11.
2. Basic Building Blocks: SR Latch Analysis

- \(S = 0, \ R = 0 \): then \(Q = Q_{\text{prev}} \) and \(\overline{Q} = \overline{Q_{\text{prev}}} \) (memory)

- \(S = 1, \ R = 1 \): then \(Q = 0 \) and \(\overline{Q} = 0 \) (invalid state: \(Q \neq \overline{Q} \))

2. Basic Building Blocks: SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
 - Control what value is being stored with \(S, R \) inputs
 - Set: Make the output 1 (\(S = 1, \ R = 0, \ Q = 1 \))
 - Reset: Make the output 0 (\(S = 0, \ R = 1, \ Q = 0 \))

- Must do something to avoid invalid state (when \(S = R = 1 \))

The only way to reach state \((Q,Y) = (0,0)\) or \((1,1)\) is via edge labeled SR=11.
2. Basic Building Blocks: D Latch

- Two inputs: \(CLK, D \)
 - \(CLK \): controls \textit{when} the output changes
 - \(D \) (the data input): controls \textit{what} the output changes to

- Function
 - When \(CLK = 1 \), \(D \) passes through to \(Q \) (the latch is \textit{transparent})
 - When \(CLK = 0 \), \(Q \) holds its previous value (the latch is \textit{opaque})

- Avoids invalid case when \(Q \neq \text{NOT } \bar{Q} \)

2. Basic Building Blocks: D Latch Internal Circuit

<table>
<thead>
<tr>
<th>(CLK)</th>
<th>(D)</th>
<th>(D')</th>
<th>(S)</th>
<th>(R)</th>
<th>(Q)</th>
<th>(\bar{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>(Q_{\text{prev}})</td>
<td>(\bar{Q}_{\text{prev}})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2. Basic Building Blocks: D Flip-Flop

- Two inputs: \(CLK, D \)
- **Function**
 - The flip-flop “samples” \(D \) on the rising edge of \(CLK \)
 - When \(CLK \) rises from 0 to 1, \(D \) passes through to \(Q \)
 - Otherwise, \(Q \) holds its previous value
 - \(Q \) changes only on the rising edge of \(CLK \)
- A flip-flop is called an *edge-triggered* device because it is activated on the clock edge

D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When \(CLK = 0 \)
 - L1 is transparent, L2 is opaque
 - \(D \) passes through to N1
- When \(CLK = 1 \)
 - L2 is transparent, L1 is opaque
 - N1 passes through to \(Q \)
- Thus, on the edge of the clock (when \(CLK \) rises from 0 to 1)
 - \(D \) passes through to \(Q \)
2. Basic Building Blocks: D Flip-Flop (Delay)

D Flip-Flop vs. D Latch

CLK
D Q
Q

CLK
D Q
Q

2. Basic Building Blocks: Latch and FF (two latches)

A latch can be considered as a door

CLK = 0, door is shut

CLK = 1, door is unlocked

A flip-flop is a two door entrance

CLK = 1
CLK = 0
CLK = 1

2. Basic Building Blocks: D Flip-Flop (Delay)

D → Q
CLK → Q'

<table>
<thead>
<tr>
<th>Id</th>
<th>D Q(t)</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1 0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

State table

<table>
<thead>
<tr>
<th>D</th>
<th>0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 1</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Characteristic Expression: $Q(t+1) = D(t)$

2. Examples

Can D flip-flip serve as a memory component?

A. Yes
B. No
2. Examples: Rising vs. Falling Edge D FF

![Symbol for rising-edge triggered D flip-flop](image1.png)

Symbol for rising-edge triggered D flip-flop

![Symbol for falling-edge triggered D flip-flop](image2.png)

Symbol for falling-edge triggered D flip-flop

- **Inputs:** CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored

- **Function**
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state

2. Examples: Enabled D-FFs

- **Inputs:** CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored

- **Function**
 - EN = 1: D passes through to Q on the clock edge
 - EN = 0: the flip-flop retains its previous state

Resettable Flip-Flops

- **Inputs:** CLK, D, Reset

- **Function:**
 - **Reset = 1:** Q is forced to 0
 - **Reset = 0:** flip-flop behaves as ordinary D flip-flop

- Two types:
 - **Synchronous:** resets at the clock edge only
 - **Asynchronous:** resets immediately when Reset = 1

- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop

- Synchronously resettable flip-flop circuit:

- There are also synch/asynch settable FFs

2. Examples: Bit Storage Overview

- **Symbols**

- ** Inputs:**
 - S and R only have effect when C = 1. We can design outside circuit so SR=11 never happens when C=1. Problem: avoiding SR=11 can be a burden.

- **SR can't be 11 if D is stable before and while C=1, and will be 11 for only a brief glitch even if D changes while C=1.**
 - Transition may cross many levels of latches.

- **Only loads D value present at rising clock edge, so values can't propagate to other flip-flops during same clock cycle.**
 - Transition happens between two level of flip-flops.
2. Examples: Shift register

- Holds & shifts samples of input

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Examples: Pattern Recognizer

- Combinational function of input samples
2. Examples: Counters

- Sequences through a fixed set of patterns

```
<table>
<thead>
<tr>
<th>IN</th>
<th>D</th>
<th>Q</th>
<th>D</th>
<th>Q</th>
<th>D</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
```

Modulo-4 counter circuit

\[
q_0^{t+1} = \neg \text{inc} \cdot q_0^t + \text{inc} \cdot \neg q_0^t \\
q_1^{t+1} = \neg \text{inc} \cdot q_1^t + \text{inc} \cdot \neg q_1^t \cdot q_0^t + \text{inc} \cdot q_1^t \cdot q_0^t
\]

"Optimized" logic
\[
q_0^{t+1} = \text{inc} \oplus q_0^t \\
q_1^{t+1} = (\text{inc} \oplus 1) \oplus q_1^t : q_1^t
\]

Appendix: slides on BSV

Describing Sequential Ckts

- State diagrams and next-state tables nor are suitable for describing very large digital designs
 - large circuits must be described in a modular fashion -- as a collection of cooperating FSMs
- BSV is a modern programming language to describe cooperating FSMs
 - We will give various examples of FSMs in BSV

```
Modulo-4 counter circuit
```

\[
q_0^{t+1} = \neg \text{inc} \cdot q_0^t + \text{inc} \cdot \neg q_0^t \\
q_1^{t+1} = \neg \text{inc} \cdot q_1^t + \text{inc} \cdot \neg q_1^t \cdot q_0^t + \text{inc} \cdot q_1^t \cdot q_0^t
\]

"Optimized" logic
\[
q_0^{t+1} = \text{inc} \oplus q_0^t \\
q_1^{t+1} = (\text{inc} \oplus 1) \oplus q_1^t : q_1^t
\]

<table>
<thead>
<tr>
<th>PS input</th>
<th>inc=0</th>
<th>inc=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>00</td>
</tr>
</tbody>
</table>

PS: q_1^t q_0^t; NS: q_1^{t+1} q_0^{t+1}
modulo4 counter in BSV

```
module moduloCounter(Counter);
  Reg#(Bit#(2)) cnt <= mkReg(0);
method Action inc;
  cnt <= (!cnt[1] & cnt[0]) | cnt[1] & !cnt[0],
          !cnt[0]);
endmethod
method Bit#(2) read;
  return cnt;
endmethod
endmodule
```

State specification

Initial value

An action to specify how the value of the cnt is to be set

Module

- A module in BSV is like a class definition in Java or C++
 - It has internal state
 - The internal state can only be read and manipulated by the (interface) methods
 - An action specifies which state elements are to be modified
 - Actions are atomic -- either all the specified state elements are modified or none of them are modified (no partially modified state is visible)

Interface

- Modulo counter has the following interface, i.e., type

```
interface Counter;
  method Action inc;
  method Bit#(2) read;
endinterface
```

- An interface can have many different implementations
 - For example, the numbers may be represented as Gray code

FIFO Interface

```
interface Fifo#(numeric type size, type t);
  method Bool notFull;
  method Bool notEmpty;
  method Action enq(t x);
  method Action deq;
  method t first;
endinterface
```

- enq should be called only if notFull returns True;
- deq and first should be called only if notEmpty returns True