Lecture 7: Sequential Networks

CK Cheng
Dept. of Computer Science and Engineering
University of California, San Diego
Part II: Sequential Networks

1. Introduction
 1. Sequential circuits
 2. Memory hierarchy
 3. Basic mechanism of memory

2. Basic Building Blocks
 1. Latches
 2. Flip-Flops
 3. Examples of Memory Modules

3. Implementation
 1. Finite state machine
1. Introduction: What is a sequential circuit?

“A circuit whose output depends on current inputs and past outputs”

“A circuit with memory”

Memory: a key parameter is Time

![Diagram of a sequential circuit with inputs x_i, memory S_i, and output y_i.]
1. Introduction: Sequential Network Key features

Memory: Flip flops
Specification: Finite State Machines
Implementation: Excitation Tables
Main Theme: Timing

Present time = t and next time = t+1
Timing constraints to separate the present and next times.

\[y_i = f_i(S^t, X) \]
\[s_{i}^{t+1} = g_i(S^t, X) \]
1. Introduction: Sequential Network Key features

Main Theme: Timing

Present time = t and next time = t + 1

Timing constraints to separate the present and next times.

\[y_i = f_i(S^t, X) \]
\[s_{i+1} = g_i(S^t, X) \]
1. Introduction: Different Types of Memory/Storage

- Typical Computer Memory Hierarchy
- Tradeoff between speed (latency) and size
- Size relates to
 - Storage density (area/bit)
 - Power (power/bit)

- Registers/Latches
- Register File (Static Memory - SRAM)
- Cache Memory (Static Memory - SRAM)
- Main Memory (Dynamic Memory – DRAM)
- NVM Main Memory (Non-Volatile Memory– e.g. Flash)
- Disk
1. Introduction: Fundamental Memory Mechanism
1. Introduction: Memory Mechanism

Capacitive Load

- Fundamental building block of sequential circuits
- Two outputs: \overline{Q}, Q
- There is a feedback loop!
 - In a typical combinational logic, there is no feedback loop.
- No inputs
1. Introduction: Capacitive Loads

- Consider the two possible cases:
 - \(Q = 0 \): then \(Q' = 1 \) and \(Q = 0 \) (consistent)
 - \(Q = 1 \): then \(Q' = 0 \) and \(Q = 1 \) (consistent)

- Bistable circuit stores 1 bit of state in the state variable, \(Q \) (or \(Q' \))
- Hold the value due to capacitive charges and feedback loop strengthening

- But there are **no inputs to control the state**
Example

Q. Given a memory component made out of a loop of inverters, the number of inverters in the loop has to be
A. Even
B. Odd
C. No constraints
1. Introduction: Memory Storage Mechanism

- Word line (WL) to access cell
- Read – measure voltage difference between B+ and B-
- Write – force values of B+ and B- which may flip the cell
- Static Random Access Memory - SRAM
2. Basic Building Blocks

- Latches (Level Sensitive)
 - SR Latches, D Latches
- Flip-Flops (Edge Triggered)
 - D FFs, (JK FFs, T FFs)
- Examples of Memory Modules
 - Registers, Shift Registers, Pattern Recognizers, Counters, FIFOs
2. Basic Building Blocks: Flight attendant call button

- **Flight attendant call button**
 - Press call: light turns on
 - *Stays on* after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

- **SR latch implementation**
 - Call=1 : sets Q to 1 and keeps it at 1
 - Cancel=1 : resets Q to 0
2. Basic Building Blocks: SR (Set/Reset) Latch

- SR Latch

- Consider the four possible cases:
 - $S = 1$, $R = 0$
 - $S = 0$, $R = 1$
 - $S = 0$, $R = 0$
 - $S = 1$, $R = 1$
2. Basic Building Blocks: SR Latch Analysis

- \(S = 1, R = 0 \): then \(Q = 1 \) and \(\overline{Q} = 0 \)

- \(S = 0, R = 1 \): then \(Q = 0 \) and \(\overline{Q} = 1 \)
2. Basic Building Blocks: SR Latch Analysis

- $S = 0, R = 0$: then $Q = Q_{prev}$
 - $Q_{prev} = 0$
 - $Q_{prev} = 1$

- $S = 1, R = 1$: then $Q = 0$ and $\bar{Q} = 0$
2. Basic Building Blocks: SR Latch

Inputs: S, R

State: (Q, y)

\[y = (S+Q)' \]

\[Q = (R+y)' \]
Truth table of SR latch with incremental steps in time

\[y = (S + Q)' \]

\[Q = (R + y)' \]
“State Table” of SR latch

<table>
<thead>
<tr>
<th>id</th>
<th>S</th>
<th>R</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\text{SR})</th>
<th>(00)</th>
<th>(01)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Qy})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>

19
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR=00: (Q,y) does not change if (Q,y)= (1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing

Remark: To verify the design, we need to enumerate all combinations.
State Table and State Diagram

State Table

<table>
<thead>
<tr>
<th>(\text{SR}) (\text{Qy})</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>

State Diagram

[Diagram showing state transitions with labels 00, 01, 10, 11 representing state changes.]
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)

However, when (Q,y) = (0,0) or (1,1), the output keeps changing.

Q. Suppose that we can set the initial state (Q,y)=(0,1). To avoid the SR latch output from toggling or behaving in an undefined way which input combinations should be avoided:
A. (S, R) = (0, 0)
B. (S, R) = (1, 1)
C. None of the above
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing

We set the initial state (Q,y)= (0,1) or (1,0). To avoid the state
(Q,y)= (0,0) or (1,1), we block the input SR=11.
Thus, without input SR=11, the state can only be (Q,y)= (0,1)
or (1,0).
The only way to reach state \((Q,y)=(0,0)\) or \((1,1)\) is via edge labeled \(SR=11\).
The only way to reach state \((Q,y)=(0,0)\) or \((1,1)\) is via edge labeled \(SR=11\).
2. Basic Building Blocks: SR Latch Analysis

- $S = 0, R = 0$: then $Q = Q_{prev}$ and $\overline{Q} = \overline{Q}_{prev}$ (memory!)

 \[Q_{prev} = 0 \]

 \[Q_{prev} = 1 \]

- $S = 1, R = 1$: then $Q = 0$ and $\overline{Q} = 0$ (invalid state: $Q \neq \text{NOT } \overline{Q}$)

 \[Q_{prev} = 0 \]

 \[Q_{prev} = 1 \]
2. Basic Building Blocks: SR Latch

CASES
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR = 00: if (Q,y) = (0,0) or (1,1), the output keeps changing
Solutions: Avoid the case that SR = (1,1).

State table

<table>
<thead>
<tr>
<th>PS</th>
<th>SR</th>
<th>Characteristic Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>00</td>
<td>Q(t+1) = S(t)+R’(t)Q(t)</td>
</tr>
<tr>
<td></td>
<td>01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Q(t+1) NS (next state)
2. Basic Building Blocks: SR Latch Symbol

- SR stands for Set/Reset Latch
 - Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
 - **Set**: Make the output 1 ($S = 1$, $R = 0$, $Q = 1$)
 - **Reset**: Make the output 0 ($S = 0$, $R = 1$, $Q = 0$)

- Must do something to avoid invalid state (when $S = R = 1$)

![SR Latch Symbol]
2. Basic Building Blocks: D Latch

• Two inputs: \(CLK, D \)
 – \(CLK \): controls when the output changes
 – \(D \) (the data input): controls what the output changes to

• Function
 – When \(CLK = 1 \), \(D \) passes through to \(Q \)
 (the latch is transparent)
 – When \(CLK = 0 \), \(Q \) holds its previous value (the latch is opaque)

• Avoids invalid case when \(Q \neq \text{NOT} \overline{Q} \)
2. Basic Building Blocks: D Latch Internal Circuit
2. Basic Building Blocks: D Latch Internal Circuit

Truth Table:

<table>
<thead>
<tr>
<th>CLK</th>
<th>D</th>
<th>(\overline{D})</th>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>(\overline{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Basic Building Blocks: D Latch Internal Circuit

```
<table>
<thead>
<tr>
<th>CLK</th>
<th>D</th>
<th>̅D</th>
<th>S</th>
<th>R</th>
<th>Q prev</th>
<th>̅Q prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>̅X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

2. Basic Building Blocks: D Flip-Flop

- Two inputs: \(CLK, D \)

Function
- The flip-flop “samples” \(D \) on the rising edge of \(CLK \)
 - When \(CLK \) rises from 0 to 1, \(D \) passes through to \(Q \)
 - Otherwise, \(Q \) holds its previous value
- \(Q \) changes only on the rising edge of \(CLK \)
- A flip-flop is called an \textit{edge-triggered} device because it is activated on the clock edge

D Flip-Flop
\[D \quad Q \]
\[Q \]
2. Basic Building Blocks: D FF Internal Circuit

![D FF Internal Circuit Diagram]
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When $CLK = 0$
 - L1 is transparent, L2 is opaque
 - D passes through to N1
- When $CLK = 1$
 - L2 is transparent, L1 is opaque
 - N1 passes through to Q
- Thus, on the edge of the clock (when CLK rises from 0 to 1)
 - D passes through to Q
D Flip-Flop vs. D Latch

CLK

D Q

Q (latch)

Q (flop)

D Q

Q
D Flip-Flop vs. D Latch
2. Basic Building Blocks: Latch and FF (two latches)

A latch can be considered as a door

CLK = 0, door is shut CLK = 1, door is unlocked

A flip-flop is a two door entrance

CLK = 1 CLK = 0 CLK = 1
2. Basic Building Blocks: D Flip-Flop (Delay)

Characteristic Expression: \(Q(t+1) = D(t) \)

<table>
<thead>
<tr>
<th>Id</th>
<th>D</th>
<th>Q(t)</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

State table

\[
\begin{array}{c|cc}
PS & 0 & 1 \\
\hline
D & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
\end{array}
\]

NS = Q(t+1)
2. Basic Building Blocks: Example

Can D flip-flip serve as a memory component?
A. Yes
B. No
3. Implementation: Rising vs. Falling Edge D FF

Symbol for rising-edge triggered D flip-flop

Symbol for falling-edge triggered D flip-flop

The triangle means clock input, edge triggered

Internal design: Just invert servant clock rather than master

rising edges

falling edges
3. Implementation: Enabled D-FFs

• **Inputs:** CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored

• **Function**
 - $EN = 1$: D passes through to Q on the clock edge
 - $EN = 0$: the flip-flop retains its previous state
Resettable Flip-Flops

- **Inputs:** CLK, D, $Reset$
- **Function:**
 - $Reset = 1$: Q is forced to 0
 - $Reset = 0$: flip-flop behaves as ordinary D flip-flop
- **Two types:**
 - Synchronous: resets at the clock edge only
 - Asynchronous: resets immediately when $Reset = 1$
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop circuit:
- There are also synch/asynch settable FFs

Sources: TSR, Katz, Boriello & Vahid
3. Implementation: Bit Storage Overview

S=1 sets Q to 1, R=1 resets Q to 0. Problem: SR=11 yield undefined Q.

S and R only have effect when C=1. We can design outside circuit so SR=11 never happens when C=1. Problem: avoiding SR=11 can be a burden.

SR can’t be 11 if D is stable before and while C=1, and will be 11 for only a brief glitch even if D changes while C=1. *Transition may cross many levels of latches.

Only loads D value present at rising clock edge, so values can’t propagate to other flip-flops during same clock cycle. *Transition happens between two level of flip-flops.
Building blocks with FFs: Basic Register
3. Implementation: Shift register

- Holds & shifts samples of input

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Implementation: Shift register

- Holds & shifts samples of input

```
IN   D   Q   OUT1   D   Q   OUT2   D   Q   OUT3   D   Q   OUT4
CLK

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
3. Implementation: Pattern Recognizer

- Combinational function of input samples
3. Implementation: Counters

• Sequences through a fixed set of patterns
Appendix: slides on BSV

Describing Sequential Ckts

- State diagrams and next-state tables nor are suitable for describing very large digital designs
 - large circuits must be described in a modular fashion -- as a collection of cooperating FSMs
- BSV is a modern programming language to describe cooperating FSMs
 - We will give various examples of FSMs in BSV
Modulo-4 counter circuit

\[q_0^{t+1} = \neg \text{inc} \cdot q_0^t + \text{inc} \cdot \neg q_0^t \]
\[q_1^{t+1} = \neg \text{inc} \cdot q_1^t + \text{inc} \cdot \neg q_1^t \cdot q_0^t + \text{inc} \cdot q_1^t \cdot \neg q_0^t \]

“Optimized” logic
\[q_0^{t+1} = \text{inc} \oplus q_0^t \]
\[q_1^{t+1} = (\text{inc} == 1) \ ? q_0^t \oplus q_1^t : q_1^t \]
Modulo-4 counter circuit

\[q_0^{t+1} = \neg \text{inc} \cdot q_0^t + \text{inc} \cdot \neg q_0^t \]
\[q_1^{t+1} = \neg \text{inc} \cdot q_1^t + \text{inc} \cdot \neg q_1^t \cdot q_0^t + \text{inc} \cdot q_1^t \cdot \neg q_0^t \]

“Optimized” logic

\[q_0^{t+1} = \text{inc} \oplus q_0^t \]
\[q_1^{t+1} = (\text{inc} == 1) \ ? \ q_0^t \oplus q_1^t : q_1^t \]

<table>
<thead>
<tr>
<th>PS\input</th>
<th>inc=0</th>
<th>inc=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>00</td>
</tr>
</tbody>
</table>

PS: q_1^t q_0^t, NS: q_1^{t+1} q_0^{t+1}
module moduloCounter(Counter);
 Reg#(Bit#(2)) cnt <- mkReg(0);
 method Action inc;
 cnt <= {!cnt[1]&cnt[0] | cnt[1]&!cnt[0],
 !cnt[0]};
 endmethod
 method Bit#(2) read;
 return cnt;
 endmethod
endmodule
• Modulo counter has the following interface, i.e., type

```plaintext
interface Counter;
    method Action inc;
    method Bit#(2) read;
endinterface
```

• An interface can have many different implementations
 – For example, the numbers may be represented as Gray code
Modules

- A module in BSV is like a class definition in Java or C++
 - It has internal state
 - The internal state can only be read and manipulated by the (interface) methods
 - An action specifies which state elements are to be modified
 - Actions are atomic -- either all the specified state elements are modified or none of them are modified (no partially modified state is visible)
interface Fifo\#(numeric type size, type t);
method Bool notFull;
method Bool notEmpty;
method Action enq(t x);
method Action deq;
method t first;
endinterface

- enq should be called only if notFull returns True;
- deq and first should be called only if notEmpty returns True
module mkCFFifo (Fifo#(1, t));
 Reg#(t) d <- mkRegU;
 Reg#(Bool) v <- mkReg(False);
method Bool notFull;
 return !v;
endmethod
method Bool notEmpty;
 return v;
endmethod
method Action enq(t x);
 v <= True; d <= x;
endmethod
method Action deq;
 v <= False;
endmethod
method t first;
 return d;
endmethod
endmodule
FIFO Module: methods with guarded interfaces

- Every method has a guard (rdy wire); the value returned by a value method is meaningful only if its guard is true.
- Every action method has an enable signal (en wire); an action method is invoked (en is set to true) only if the guard is true.
- Guards make it possible to transfer the responsibility of the correct use of a method from the user to the compiler.
- Guards are extraordinarily convenient for programming and also enhance modularity of the code.

```
interface FIFO#(numeric type size, type t);
  method Action enq(t x);
  method Action deq;
  method t first;
endinterface
```
One-Element FIFO Implementation with guards

module mkCFFifo (Fifo#(1, t));
 Reg#(t) d <- mkRegU;
 Reg#(Bool) v <- mkReg(False);
method Action enq(t x) if (!v); not full
 v <= True; d <= x;
endmethod
method Action deq if (v); not empty
 v <= False;
endmethod
method t first if (v);
 return d;
endmethod
endmodule