CS 140 Lecture 15
Sequential Modules

Professor CK Cheng
CSE Dept.
UC San Diego
Standard Sequential Modules

1. Serial Adders
2. Serial Multipliers
3. Register
4. Counter
Motivation for Serial Adders and Multipliers

• Tradeoff of silicon area and system performance
 – Perform process in a series of time
• Utilization of FPGA architecture
 – Slice operation bitwise
• Metrics of Cost, Speed, and Power
• Ad: Cheaper hardware, Fit for FPGA architecture, Pipelining for excellent throughput
• Dis: Longer latency
Serial Adder: Perform serial bit-addition

At time i, read a_i and b_i. Produce s_i and c_{i+1}
Internal state stores c_i. Carry bit c_0 is set as c_{in}
Serial Adder using D F-F

Feed a_i and b_i and generate s_i at time i. Where is c_i and c_{i+1}?
Serial Adder using a D Flip-Flop

<table>
<thead>
<tr>
<th>id</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>c_{i+1}</th>
<th>s_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$D = c_{i+1}$
$Q = c_i$
Serial Adder using a D Flip-Flop Logic Diagram
Multiplication using Serial Addition

$$3 \times 5 = 15$$

\[\begin{array}{c}
0 & 1 & 1 \\
\times & 1 & 0 & 1 \\
\hline
0 & 1 & 1 \\
0 & 0 & 0 \\
+ & 0 & 1 & 1 \\
\hline
0 & 1 & 1 & 1 & 1
\end{array} \]

\[\begin{array}{cccc}
a_2 & a_1 & a_0 \\
\times & b_2 & b_1 & b_0 \\
\hline
a_2b_0 & a_1b_0 & a_0b_0 \\
a_2b_1 & a_1b_1 & a_0b_1 \\
+ & a_2b_2 & a_1b_2 & a_0b_2 \\
\hline
m_5 & m_4 & m_3 & m_2 & m_1 & m_0
\end{array} \]

For \(m = AxB \), set \(m^{(0)} = 0 \)

At time \(i \), perform \(m^{(i+1)} = m^{(i)} + Ab_i2^i \)
Register

\[Q(t+1) = (0, 0, \ldots, 0) \]
\[= D \quad \text{if } CLR = 1 \]
\[= Q(t) \quad \text{if } LD = 0 \text{ and } CLR = 0 \]

\[= D \quad \text{if } LD = 1 \text{ and } CLR = 0 \]

\[= Q(t) \quad \text{if } LD = 0 \text{ and } CLR = 0 \]
Counter

- Program Counter
- Address Keeper: FIFO, LIFO
- Clock Divider
- Sequential Machine
Counter

• Modulo-n Counter
• Modulo Counter (m<n)
• Counter (a-to-b)
• Counter of an Arbitrary Sequence
• Cascade Counter
Modulo-n Counter

\[Q(t+1) = \begin{cases}
(0, 0, \ldots, 0) & \text{if CLR} = 1 \\
D & \text{if LD} = 1 \text{ and } CLR = 0 \\
(Q(t)+1) \mod n & \text{if LD} = 0, CNT = 1 \text{ and } CLR = 0 \\
Q(t) & \text{if LD} = 0, CNT = 0 \text{ and } CLR = 0
\end{cases} \]

\[TC = \begin{cases}
1 & \text{if } Q(t) = n-1 \text{ and } CNT = 1 \\
0 & \text{otherwise}
\end{cases} \]
Modulo-m Counter \((m < n)\)

Given a mod 16 counter, construct a mod-m counter \((0 < m < 16)\) with AND, OR, NOT gates

\[m = 6 \]

Set \(LD = 1 \) when \(X = 1 \) and \((Q_3Q_2Q_1Q_0) = (0101)\), ie \(m-1 \)
Counter (a-to-b)
Given a mod 16 counter, construct an a-to-b counter
(0 < a < b < 15)

A 5-to-11 Counter

Set LD = 1 when X = 1 and \((Q_3Q_2Q_1Q_0) = b\) (in this case, 1011)
Counter of an Arbitrary Sequence

Given a mod 8 counter, construct a counter with sequence 0 1 5 6 2 3 7

When Q = 1, load D = 5
When Q = 6, load D = 2
When Q = 3, load D = 7
Counter of an Arbitrary Sequence

Given a mod 8 counter, construct a counter with sequence 0 1 5 6 2 3 7

<table>
<thead>
<tr>
<th>Id</th>
<th>Q_2Q_1Q_0</th>
<th>LD</th>
<th>D_2</th>
<th>D_1</th>
<th>D_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

K Mapping LD and D, we get

\[
LD = Q_2'Q_0 + Q_2Q_0',
\]

\[
D_2 = Q_0
\]

\[
D_1 = Q_1
\]

\[
D_0 = Q_0
\]
Counter of an Arbitrary Sequence

Example: Count in sequence 0 2 3 4 5 7 6

LD = 1 D = 2 When Q(t) = 0
LD = 1 D = 7 When Q(t) = 5
LD = 1 D = 6 When Q(t) = 7
LD = 1 D = 0 When Q(t) = 6

Through K-map, we derive

LD = \bar{Q}_2Q_0 + Q_1Q_0 + Q_2Q_0 + Q_2Q_1
D_2 = Q_0
D_1 = \bar{Q}_1Q_0
D_0 = \bar{Q}_1Q_0

<table>
<thead>
<tr>
<th>Id</th>
<th>Q_2Q_1Q_0</th>
<th>LD</th>
<th>D_2</th>
<th>D_1</th>
<th>D_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Cascade Counter

A Cascade Modulo 256 Counter
Cascade Counter

TC = 1 when \((Q_3, Q_2, Q_1, Q_0) = (1, 1, 1, 1)\) and X = 1
\((Q_7(t+1) \ Q_6(t+1) \ Q_5(t+1) \ Q_4(t+1)) = (Q_7(t) \ Q_6(t) \ Q_5(t) \ Q_4(t)) + 1 \mod 16\)
when \(T_{C0} = 1\)

The circuit functions as a modulo 256 counter.

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{7-4})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(T_{C0})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(Q_{3-0})</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>...</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>