CSE 132C
Database System Implementation

Arun Kumar

Topic 7: Parallel Data Systems

Chapter 22 till 22.5 of Cow Book; extra references listed
Outline

- Parallel RDBMSs
- Cloud-Native RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems aka Dataflow Systems
Parallel DBMSs: Motivation

- **Scalability**: Database is too large for a single node’s disk
- **Performance**: Exploit multiple cores/disks/nodes
- … while maintaining almost all other benefits of (R)DBMSs!
Three Paradigms of Parallelism

- **Shared-Disk Parallelism**
- **Shared-Memory Parallelism**
- **Shared-Nothing Parallelism**

Interconnect

Contention

Data/Partitioned Parallelism

- Symmetric Multi-Processing (SMP)
- Massively Parallel Processing (MPP)
Shared-Nothing Parallelism

❖ Followed by almost all parallel RDBMSs (and “Big Data” sys.)
❖ 1 **manager** node orchestrates multiple **worker** nodes
❖ Need **partitioned parallel** implementation algorithms for relational op implementations and query proc.; modify QO

Q: *If we give 10 workers (CPUs/nodes) for processing a query in parallel, will its runtime go down by a factor of 10?*

It depends!
(Access patterns of the query’s operators, communication of intermediate data, relative startup overhead, etc.)
Shared-Nothing Parallelism

Speedup plot / Strong scaling

Scaleup plot / Weak scaling

Q: Is superlinear speedup/scaleup possible?
Shared-Nothing Parallelism: Outline

❖ Data Partitioning
❖ Parallel Operator Implementations
❖ Parallel Query Optimization
❖ Parallel vs “Distributed” DBMSs
Data Partitioning

- A part of **ETL** (Extract-Transform-Load) for database
- Typically, record-wise/horizontal partitioning (aka “sharding”)
- Three common schemes (given k machines):
 - **Round-robin**: assign tuple i to machine i MOD k
 - **Hashing-based**: needs partitioning attribute(s)
 - **Range-based**: needs ordinal partitioning attribute(s)
- **Tradeoffs**: Round-robin often inefficient for parallel query processing (why?); range-based good for range queries but faces new kind of “skew”; hashing-based is most common
- **Replication** often used for more availability, performance
Parallel Scans and Select

- **Intra-operator parallelism** is our primary focus
 - Inter-operator and inter-query parallelism also possible!

Filescan:
- Trivial! Worker simply scans its partition and streams it
- Apply selection predicate (if any)

Indexed:
- Depends on data partitioning scheme and predicate!
- Same tradeoffs: Hash index vs B+ Tree index
- Each worker can have its own (sub-)index
- Manager *routes* query based on “matching workers”
Parallel Sorting

❖ **Naive algorithm:**

1. Each worker sorts local partition (EMS)
2. Manager merges all locally sorted runs

❖ **Issue:** Parallelism is limited during merging phase!

❖ **Faster algorithm:**

1. Scan in parallel and *range partition* data (most likely a repartitioning) based on SortKey
2. Each worker sorts local allotted range (EMS); result is globally sorted and conveniently range-partitioned

❖ **Potential Issue:** *Skew* in range partitions; handled by roughly estimating distribution using *sampling*
Parallel Sorting

Original Partitions

Worker 1

Manager

Worker 2

V_1 to V_2

Worker n

V_{n-1} to V_n

Assign SortKey

Manager

Range-splits

V_2 to V_3

Worker n

Re-partitioning

Range-partitioned

Worker 1

Manager

Local EMS

Worker 2

V_2 to V_3

Worker n

Globally Sorted

Manager

Worker 1

V_1 to V_2

Worker 2

V_2 to V_3

Worker n

V_{n-1} to V_n
Parallel Aggregates and Group By

❖ Without Group By List:
 ❖ Trivial for MAX, MIN, COUNT, SUM, AVG (why?)
 ❖ MEDIAN requires parallel sorting (why?)

❖ With Group By List:
 1. If AggFunc allows, pre-compute partial aggregates
 2. Manager assigns each worker a set of groups (hash partition)
 3. Each worker communicates its partial aggregate for a group to that group’s assigned worker (aka “shuffle”)
 4. Each worker finishes aggregating for all its assigned groups
Parallel Group By Aggregate

Original Partitions

Manager
Worker 1
Worker 2
Worker n

Partial Aggs

Manager
Worker 1
Worker 2
Worker n

Re-partitioned Partial Aggs

Manager
Worker 1
Worker 2
Worker n

Final Aggs

Manager
Worker 1
Worker 2
Worker n

Local GrpBY
Worker 1 GrpBY
Worker 2 GrpBY
Worker n GrpBY

Assign GroupingList
Hash splits

G₁
G₂
Gₙ

Re-partitioning

Local GrpBY Again
Worker 1
Worker 2
Worker n

Final Aggs

Manager
Worker 1
Worker 2
Worker n
Parallel Project

- **Non-deduplicating Project:**
 - Trivial! Pipelined with Scans/Select

- **Deduplicating Project:**
 1. Each worker deduplicates its partition on ProjectionList
 2. If estimated output size is small (catalog?), workers communicate their results to Manager to finish dedup.
 3. If estimated output size is too large for Manager’s disk, similar algorithm as Parallel Aggregate with Group By, except, there is no AggFunc computation
Parallel Nested Loops Join

- Given two tables A and B and JoinAttribute for equi-join
 1. Manager assigns range/hash splits on JoinAttribute to workers
 2. Repartitioning of A and B separately using same splits on JoinAttribute (unless pre-partitioned on it!)
 3. Worker i applies BNLJ locally on its partitions Ai and Bi
 4. Overall join output is just collection of all n worker outputs

- If join is not equi-join, there might be a lot of communication between workers; worst-case: all-to-all for cross-product!
Parallel “Split” and “Merge” for Joins

- Repartitioning quite common for parallel (equi-)joins
- Functionality abstracted as two new physical operators:
 - **Split**: each worker sends a subset of its partition to another worker based on Manager’s command (hash/range)
 - **Merge**: each worker unions subsets sent to it by others and constructs its assigned (re)partitioned subset
- Useful for parallel BNLJ, Sort-Merge Join, and Hash Join
For SMJ, split is on ranges of (ordinal) JoinAttribute; for HJ, split is on hash function over JoinAttribute.

Worker i does local join of Ai and Bi using SMJ or HJ.
Improved Parallel Hash Join

- 2-phase parallel HJ to improve performance
- **Idea:** Previous version hash partitions JoinAttribute to n (same as # workers); instead, decouple the two and do a 2-stage process: partition phase and join phase

 Partition Phase: Say $|A| < |B|$; divide A and B into k (can be > n) partitions using $h1()$ s.t. each $F \times |A_i| < \text{Cluster RAM}$

 Join Phase: Repartition an A_i into n partitions using $h2()$; build hash table on new A_{ij} at worker j as tuples arrive; repartition B_i using $h2()$; local HJ of A_{ij} and B_{ij} on worker j in parallel for $j = 1$ to n; repeat all these steps for each $i = 1$ to k

 Uses all n workers for join of each subset pair $A_i \bowtie B_i$
Parallel Query Optimization

- Far more complex than single-node QO!
- I/O cost, CPU cost, and communication cost for each phy. op.
- Space of PQPs explodes: each node can have its own different local sub-plan (e.g., filescan v indexed)
- Pipeline parallelism and partitioned parallelism can be interleaved in complex ways!
- Join order enumeration affected: bushy trees can be good!
- … (we will skip more details)
Parallel vs “Distributed” RDBMSs

- A parallel RDBMS layers distribution atop the file system
 - Can handle dozens of nodes (Gamma, Teradata, etc.)
- Raghu’s “distributed”: collection of “independent” DBMSs
 - Quirk of terminology; “federated” more accurate term
 - Each base RDBMS can be at a different location!
 - Each RDBMS might host a subset of the database files
 - Might need to ship entire files for distributed QP
 - … (we will skip more details)
- These days: “Polystores,” federated DBMSs on steroids!
Outline

❖ Parallel RDBMSs
❖ **Cloud-Native RDBMSs**
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems aka Dataflow Systems
Cloud Computing

- Compute, storage, memory, networking are virtualized and exist on remote servers; rented by application users
 - **Manageability**: Managing hardware is not user's problem!
 - **Pay-as-you-go**: Fine-grained pricing economics based on actual usage (granularity: seconds to years!)
 - **Elasticity**: Can dynamically add or reduce capacity based on actual workload’s demand
- Infrastructure-as-a-Service (IaaS); Platform-as-a-Service (PaaS); Software-as-a-Service (SaaS)
Q: How to redesign a parallel RDBMS to best exploit the cloud’s capabilities?
Evolution of Cloud Infrastructure

❖ **Data Center**: Physical space from which a cloud is operated

❖ **3 generations of data centers/clouds:**
 ❖ **Cloud 1.0 (Past)**: Networked servers; user rents/time-sliced access to servers needed for data/software
 ❖ **Cloud 2.0 (Current)**: “Virtualization” of networked servers; user rents amount of resource capacity; cloud provider has a lot more flexibility on provisioning (multi-tenancy, load balancing, more elasticity, etc.)
 ❖ **Cloud 3.0 (Ongoing Research)**: “Serverless” and disaggregated resources all connected to fast networks
Revisiting Parallelism in the Cloud

Networks have become much faster: 100GbE to even TbE!

Such bundling could under-utilize some resources

Q: How to exploit cloud’s virtualization of compute, memory, and storage resources to improve speed and utilization?
The promise of full serverless / resource disaggregation:
All resources (compute, memory, storage) are network-attached and can be elastically added/removed

Q: How to fulfill the promise with minimal added latency?
Cloud-Native Parallel RDBMSs

- Not just running a regular parallel RDBMS on IaaS!
- Need to revisit, redesign, and reimplemented storage subsystem, memory management, query processing and optimization, transaction management, and more!
- Higher levels (data model, SQL, parser, etc.) preserved
- Cloud providers, traditional database companies, startups

Amazon Aurora
Amazon Redshift
Amazon Athena
Google Cloud Spanner
Azure SQL Database
Snowflake
Key Example:

Regular MPP (shared-nothing style)

Heterogeneous and elastic compute capacities

Wide variety of storage formats

Spectrum supports ad-hoc remote reads from S3 vs local storage

https://www.intermix.io/blog/amazon-redshift-architecture/#amazon_redshift_architecture_and_the_life_of_a_query
Key Example:

Each virtual warehouse is an independent MPP compute cluster.

Shared-disk style + elastic compute

Compressed columnar format

https://docs.snowflake.net/manuals/user-guide/intro-key-concepts.html#snowflake-architecture
Key Example:

- Serverless!
- Remote reads from S3
- Schema-on-read
- ETL not needed
- Many data formats
- Simple interactive queries
- Federated possible

https://www.xenonstack.com/blog/amazon-athena-quicksight/
Outline

❖ Parallel RDBMSs
❖ Cloud-Native RDBMSs
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems aka Dataflow Systems
Relational model and RDBMSs are **too restrictive**:

1. “Flat” tables with few data/attribute types
2. Restricted language interface (SQL)
3. Need to know schema first
4. Optimized for static dataset

Object-Relational DBMSs: UDT, UDFs, text, multimedia, etc.

PL/SQL: recursive SQL; embedded SQL; QBE; visual interfaces

3. Need to know schema first

 “Schema-later” **semi-structured**: XML+XQuery; JSON; YAML

4. Optimized for static dataset

 Stream data model; “standing” queries; time windows

Ad: Take DSC 104, CSE 132B, CSE 135 on these DB capabilities
So, why did people still need to look beyond RDBMSs?
Beyond RDBMSs: A Brief History

The DB community got blindsided by the unstoppable rise of the Web/Internet giants!

 annunciator

- DB folks underappreciated 4 key concerns of Web folks:
 - Developability
 - Fault Tolerance
 - Elasticity
 - Cost & industry “politics”!
DB/Enterprise vs. Web Dichotomy

- **Developability**: RDBMS extensibility mechanisms (UDTs, UDFs, etc.) are *too painful to use* for programmers

 - **DB companies**: we write software and sell to *enterprises* (banks, retail, etc.)
 - **Web companies**: we hire army of software engineers to build our own software systems!

Lesson: Need **simpler APIs** and DBMSs that can scale **custom data-intensive programs**
Fault Tolerance: What if we run on 100Ks of machines?!

DB companies: our typical customer scenario is a few dozen machines, often high-end

Web companies: we use 100s of 1000s of machines (often low-end) for planetary-scale Web services!

Lesson: If a machine fails, user should not have to rerun entire query; DBMS must handle fault tolerance, not user/appl.

(Cloud-native RDBMSs now offer fault tolerance by design)
Elasticity: Resources should adapt to workload

DB companies: our customers have “fairly predictably” sized datasets and workloads; can fix their clusters!

Web companies: our workloads could vary widely and the datasets they need vary widely!

Lesson: Need to be able to upsize and downsize clusters easily on the fly, based on current workload
Cost/Industry politics: Commercial RDBMS licenses too costly!

DB companies: our customers have $$$!
Web companies: our products are mostly free (ads?); why pay so much $$$ if we can build our own DBMSs?

Lesson: Free & open source can lead to viral adoption; many Web companies originally started with MySQL (!)
A new breed of parallel data systems called **Dataflow Systems** jolted the DB folks from being smug and complacent!
Outline

❖ Parallel RDBMSs
❖ Cloud-Native RDBMSs
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems aka Dataflow Systems
❖ The MapReduce/Hadoop Craze
❖ Spark and Other Dataflow Systems
“Big Data”

- Marketing term; think “Big” as in “Big Oil” or “Big Government”, not “big building” or “big car”

- Wikipedia says: “Data that is so large and complex that existing toolkits [read RDBMSs!] are not adequate [hah!]”

- Typical characterization by 3 Vs:
 - **Volume**: larger-than-RAM; >= TBs, even Exabytes!
 - **Variety**: relations, webpages, docs, tweets, multimedia, etc.
 - **Velocity**: high generation rate, e.g., sensors, surveillance, etc.
Why “Big Data” now? 1. Applications

- New “data-driven mentality” in almost all applications:
 - **Web**: search, e-commerce, e-mails, social media
 - **Science**: satellite imagery, CERN’s LHC, document corpora
 - **Medicine**: pharmacogenomics, precision medicine
 - **Logistics**: sensors, GPS, “Internet of Things”
 - **Finance**: high-throughput trading, monitoring
 - **Humanities**: digitized books/literature, social media
 - **Governance**: e-voting, targeted campaigns, NSA 😊
 - …
Why “Big Data” now? 2. Storage

Worldwide Byte Shipments by Storage Media Type

Source: Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018
Outline

❖ Parallel RDBMSs
❖ Cloud-Native RDBMSs
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems aka Dataflow Systems
❖ The MapReduce/Hadoop Craze
❖ Spark and Other Dataflow Systems
The MapReduce/Hadoop Craze

- Blame Google!
- **“Simple” problem**: index, store, and search the Web!
- Who were their major systems hires? Jeff Dean and Sanjay Ghemawat (Systems, not DB or IR)
- Why did they not use RDBMSs? (Haha.) Developability, data model, fault tolerance, scale, cost, … Engineers started with MySQL; abandoned it!
What is MapReduce?

❖ Programming model for computing over **sharded data** + **distributed system** architecture
❖ **Map** and **Reduce** are terms from functional PL
❖ Engineer implements logic of Map, Reduce
❖ System implementation handles data distribution, parallelization, fault tolerance, etc. under the hood

Lesson: Was much easier for **engineers** to write programs with
What is MapReduce?

- **Standard example**: count word occurrences in a doc corpus
- **Input**: A set of text documents (say, webpages)
- **Output**: A dictionary of unique words and their counts

```java
function map (String docname, String doctext) {
  // Hmmm, sounds suspiciously familiar! :) 
  for each word w in doctext :
    emit (w, 1)
}

function reduce (String word, Iterator partialCounts) :
  sum = 0
  for each pc in partialCounts :
    sum += pc
  emit (word, sum)
```

Part of MapReduce API
How MapReduce Works

Parallel flow of control and data during MapReduce execution:

![Diagram showing the flow of control and data during MapReduce execution](image)

Under the hood, each **Mapper** and **Reducer** is a separate process; Reducers face barrier synchronization (BSP)
Fault tolerance achieved using **data replication**
Q: How would you do the word counting in RDBMS / in SQL?

❖ **First step:** Transform text docs into relations and load:

 Part of the ETL stage

 Suppose we pre-divide each doc into words w/ schema:

 DocWords (DocName, Word)

❖ **Second step:** a single, simple SQL query!

```
SELECT Word, COUNT (*)
FROM DocWords
GROUP BY Word
ORDER BY Word
```

Parallelism, scaling, etc. done by RDBMS under the hood
What is Hadoop then?

- FOSS system implementation with MapReduce as prog. model and HDFS as filesystem
- MR user API; input splits, data distribution, shuffling, fault tolerances handled by Hadoop under the hood
- Exploded in popularity in 2010s: 100s of papers, 10s of products
- A “revolution” in scalable+parallel data processing that took the DB world by surprise
- But nowadays Hadoop largely supplanted by Spark

NB: Do not confuse MR for Hadoop or vice versa!
A Spectacular “War of the Worlds”

MapReduce: A major step backwards

By David DeWitt on January 17, 2008 4:20 PM | Permalink | Comments (44) | Trackbacks (1)

[Note: Although the system attributes this post to a single author, it was written by David J. DeWitt and Michael Stonebraker]

On January 8, a Database Column reader asked for our views on new distributed database research efforts, and we’ll begin here with our thoughts on MapReduce [1]. We are aware that the recent trade press has been filled with news of the revolution of so-called “cloud computing.” This paradigm entails harnessing large numbers of commodity servers to solve a computing problem. In effect, this suggests constructing a data center by lining up a large number of “jelly beans” rather than utilizing a much smaller number of high-end servers.

For example, IBM and Google have announced plans to make a 1,000 processor cluster available to a few select universities to teach students how to program such clusters using a software tool called MapReduce [1]. Berkeley has gone so far as to plan on teaching their freshman how to program using the MapReduce framework.

As both educators and researchers, we are amazed at the hype that the MapReduce proponents have spread about how it represents a paradigm shift in the development of scalable, data-intensive applications. MapReduce may be a good idea for writing certain types of general-purpose computations, but to the database community, it is:

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago
4. Missing most of the features that are routinely included in current DBMSs
5. Incompatible with all of the tools DBMS users have come to depend on

No declarativity!
Filescan-based!
DeWitt’s work on parallel DBMSs!
Cheap rip-off of RDBMSs!
“Young Turks” vs. “Old Guard”?

Swift and scathing rebuttal from MapReduce/Hadoop world!

1. A giant step backward in the programming paradigm for large-scale data intensive applications
2. A sub-optimal implementation, in that it uses brute force instead of indexing
3. Not novel at all -- it represents a specific implementation of well known techniques developed nearly 25 years ago
4. Missing most of the features that are routinely included in current DBMS
5. Incompatible with all of the tools DBMS users have come to depend on

DBMSs too high-level/hard to use for low-level text ETL
Meant for “offline” fault-tolerant workloads on cheap nodes
Google awarded a patent for MapReduce (ahem)!
MapReduce/Hadoop not meant to be an RDBMS replacement
Enter Hybrid Systems!

- **Clever DB researches**: “Let’s get the best of both worlds!”
- Numerous projects on hybrid systems in industry/academia:

 Programming model-level: Bring declarativity from RDBMS world to MapReduce/Hadoop world

 - SQL dialect over Hadoop
 - Dataflow language over Hadoop

 Systems-level: Intermix system implementation ideas

 - HadoopDB from Yale U.
 - Microsoft Polybase
“Big Data” / Dataflow Systems

- Parallel RDBMSs
- Cloud-Native RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems aka Dataflow Systems
 - The MapReduce/Hadoop Craze
 - Spark and Other Dataflow Systems
Spark from UC Berkeley

- **Dataflow programming** model (subsumes most of RA; MR)
 - Inspired by Python Pandas style of chaining functions
 - Unified storage of relations, text, etc.; custom programs
 - System impl. (re)designed from scratch
- Tons of sponsors, gazillion bucks, unbelievable hype!
- **Key idea vs Hadoop**: exploit distributed memory to cache data
- **Key novelty vs Hadoop**: lineage-based fault tolerance
- Open-sourced to Apache; commercialized as Databricks
Distributed Architecture of Spark

https://spark.apache.org/docs/latest/cluster-overview.html
Spark’s Dataflow Programming Model

Transformations are relational ops, MR, etc. as functions

Actions are what force computation; aka *lazy evaluation*

<table>
<thead>
<tr>
<th>Transformations</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(f : T \rightarrow U)</code></td>
<td>RDD[T] \rightarrow RDD[U]</td>
</tr>
<tr>
<td><code>filter(f : T \rightarrow Bool)</code></td>
<td>RDD[T] \rightarrow RDD[T]</td>
</tr>
<tr>
<td><code>flatMap(f : T \rightarrow Seq[U])</code></td>
<td>RDD[T] \rightarrow RDD[U]</td>
</tr>
<tr>
<td><code>sample(fraction : Float)</code></td>
<td>RDD[T] \rightarrow RDD[T] (Deterministic sampling)</td>
</tr>
<tr>
<td><code>groupByKey()</code></td>
<td>RDD[(K, V)] \rightarrow RDD[(K, Seq[V])]</td>
</tr>
<tr>
<td><code>reduceByKey(f : (V, V) \rightarrow V)</code></td>
<td>RDD[(K, V)] \rightarrow RDD[(K, V)]</td>
</tr>
<tr>
<td><code>union()</code></td>
<td>(RDD[T], RDD[T]) \rightarrow RDD[T]</td>
</tr>
<tr>
<td><code>join()</code></td>
<td>(RDD[(K, V)], RDD[(K, W)]) \rightarrow RDD[(K, (V, W))]</td>
</tr>
<tr>
<td><code>cogroup()</code></td>
<td>(RDD[(K, V)], RDD[(K, W)]) \rightarrow RDD[(K, (Seq[V], Seq[W]))]</td>
</tr>
<tr>
<td><code>crossProduct()</code></td>
<td>(RDD[T], RDD[U]) \rightarrow RDD[(T, U)]</td>
</tr>
<tr>
<td><code>mapValues(f : V \rightarrow W)</code></td>
<td>RDD[(K, V)] \rightarrow RDD[(K, W)] (Preserves partitioning)</td>
</tr>
<tr>
<td><code>sort(c : Comparator[K])</code></td>
<td>RDD[(K, V)] \rightarrow RDD[(K, V)]</td>
</tr>
<tr>
<td><code>partitionBy(p : Partitioner[K])</code></td>
<td>RDD[(K, V)] \rightarrow RDD[(K, V)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>count()</code></td>
<td>RDD[T] \rightarrow Long</td>
</tr>
<tr>
<td><code>collect()</code></td>
<td>RDD[T] \rightarrow Seq[T]</td>
</tr>
<tr>
<td><code>reduce(f : (T, T) \rightarrow T)</code></td>
<td>RDD[T] \rightarrow T</td>
</tr>
<tr>
<td><code>lookup(k : K)</code></td>
<td>RDD[(K, V)] \rightarrow Seq[V] (On hash/range partitioned RDDs)</td>
</tr>
<tr>
<td><code>save(path : String)</code></td>
<td>Outputs RDD to a storage system, e.g., HDFS</td>
</tr>
</tbody>
</table>
Word Count Example in Spark

Spark RDD API available in Python, Scala, Java, and R

```python
import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()

text_file = sc.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" "))
  .map(lambda word: (word, 1))
  .reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")
```

```scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

val sc = new SparkContext(new SparkConf().setAppName("Word Count").setMaster("local"))

textFile = sc.textFile("hdfs://...")
counts = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_ + _).
counts.saveAsTextFile("hdfs://...")
```

```java
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;

JavaRDD<String> textFile = sc.textFile("hdfs://...");
JavaPairRDD<String, Integer> counts = textFile
  .flatMap(s -> Arrays.asList(s.split(" ")).iterator())
  .mapToPair(word -> new Tuple2<>((word, 1))
  .reduceByKey((a, b) -> a + b);
counts.saveAsTextFile("hdfs://...");
```

Ad: Take Yoav’s CSE 255 to write more programs with Spark
Databricks now recommends SparkSQL’s SQL or DataFrame API; avoid RDD API unless really needed

Key Reason: Automatic query optimization is more feasible

AKA painfully re-learn 40 years of RDBMS research! :)

Query Optimization in Spark

```python
def add_demographics(events):
    u = sqlCtx.table("users")
    events \n        .join(u, events.user_id == u.user_id) \n        .withColumn("city", zipToCity(df.zip)) # Load partitioned Hive table
    # Join on user_id
    # Run udf to add city column
    events = add_demographics(sqlCtx.load("/data/events", "parquet"))
    training_data = events.where(events.city == "New York").select(events.timestamp).collect()
```

Databricks is building yet another parallel RDBMS! :)

Logical Plan

- `filter`
- `join`

- `events file`
- `users table`

Physical Plan

- `join`
- `scan (events)`
- `filter`

- `scan (users)`

Physical Plan with Predicate Pushdown and Column Pruning

- `join`
- `optimized scan (events)`
- `optimized scan (users)`
Reinventing the Wheel?
Spark-based Ecosystem of Tools

The Berkeley Data Analytics Stack (BDAS)
Other Dataflow Systems

- Stratosphere/Apache Flink from TU Berlin
- Myria from U Washington
- AsterixDB from UC Irvine
- Azure Data Lakes from Microsoft
- Google Cloud Dataflow
- …
References and More Material

❖ **MapReduce/Hadoop:**

❖ **Spark:**
More on MapReduce (Optional)
Not included in this course syllabus
Abstract Semantics of MapReduce

- **Map()**: Process one “record” at a time *independently*
 - A record can *batch* multiple data examples
 - Dependencies across Mappers not allowed
 - *Emit* 1 or more key-value pairs as output(s)
 - Inputs-output data types can differ

- **Reduce()**: Gather all Map outputs across workers sharing same key into an Iterator (list)
 - Apply *aggregation* function on Iterator to get final output(s)

- **Input Split**:
 - Physical-level shard to batch many examples to one file “block” (HDFS default: 128MB?)
 - User/appl. can create *custom* Input Splits
Benefits of MapReduce

❖ **Goal:** High-level *functional* ops to simplify data-intensive programs

❖ **Key Benefits:**
 ❖ Native scalability, cluster parallelism
 ❖ Fault tolerance by system
 ❖ Map() and Reduce() are highly general; any data types/structures; great for ETL, text/multimedia
 ❖ Decent FOSS stacks (Hadoop)

❖ **Catch:** Users must learn “art” of casting program as MapReduce
 ❖ Map is record-independent; Reduce aggregates
 ❖ But MR libraries exist now in multiple PLs: Java, C++, Python, R, Scala, etc.
More MR Examples: Select

- **Input Split:**
 - Shard table tuple-wise

- **Map():**
 - On tuple, apply selection condition; if satisfies, emit KV pair with dummy key, entire tuple as value

- **Reduce():**
 - Not needed! No cross-shard aggregation here

- These kinds of MR jobs are called “**Map-only**” jobs
More MR Examples: Simple Agg.

- Suppose it is *algebraic* aggregate (SUM, AVG, MAX, etc.)
- **Input Split:**
 - Shard table tuple-wise
- **Map:**
 - On agg. attribute, compute incr. stats; emit pair with single global dummy key and incr. stats as value
- **Reduce:**
 - Since only one global dummy key, Iterator has *all* suff. stats to unify into global agg.
More MR Examples: GROUP BY Agg.

❖ Assume it is algebraic aggregate (SUM, AVG, MAX, etc.)
❖ Input Split:
 ❖ Shard table tuple-wise
❖ Map():
 ❖ On agg. attribute, compute incr. stats; emit pair with grouping attribute as key and stats as value
❖ Reduce():
 ❖ Iterator has all suff. stats for a single group; unify those to get result for that group
 ❖ Different reducers will output different groups’ results
More MR Examples: Matrix Norm

- Assume it is *algebraic* aggregate (L$_{p,q}$ norm)
- Very similar to simple SQL aggregates

Input Split:
- Shard table tuple-wise

Map():
- On agg. attribute, compute incr. stats; emit pair with single global dummy key and stats as value

Reduce():
- Since only one global dummy key, Iterator has *all* suff. stats to unify into global agg.