Lecture 18: Interdomain routing
Border Gateway Protocol

CSE 123: Computer Networks
Aaron Schulman

Some figures courtesy Mike Freedman
Lecture 18 Overview

- Path vector routing

- Border Gateway Protocol (BGP)
 - The canonical path vector protocol
 - How routing gets done on the Internet today

- AS relationships
 - Customer/Provider
 - Multihoming
 - Peer-to-peer
Separate routing inside a domain from routing between domains
 - Inside a domain use traditional interior gateway protocols (RIP, OSPF, etc)
 » You’ve seen these already
 - Between domains use Exterior Gateway Protocols (EGPs)
 » Only exchange reachability information (not specific metrics)
 » Decide what to do based on local policy

What is a domain?
Autonomous Systems

- Internet is divided into **Autonomous Systems**
 - Distinct regions of administrative control
 - Routers/links managed by a single “institution”
 - Service provider, company, university, …

- Hierarchy of Autonomous Systems
 - Large, “tier-1” provider with a nationwide backbone
 - Medium-sized regional provider with smaller backbone
 - Small network run by a single company or university

- Interaction between Autonomous Systems
 - Internal topology is not shared between ASes
 - … but, neighboring ASes interact to coordinate routing
Border routers summarize and advertise their routes to external neighbors and vice-versa. Border routers apply policy.

Internal routers can use notion of default routes.

Core is default-free; routers must have a route to all networks in the world.

But what routing protocol?
Issues with Link-state

- Topology information is flooded
 - High bandwidth and storage overhead
 - Forces nodes to divulge sensitive information

- Entire path computed locally per node
 - High processing overhead in a large network

- Minimizes some notion of total distance
 - Works only if policy is shared and uniform

- Typically used only inside an AS
 - E.g., OSPF and IS-IS
Advantages
- Hides details of the network topology
- Nodes determine only “next hop” toward the destination

Disadvantages
- Minimizes some notion of total distance, which is difficult in an interdomain setting
- Slow convergence due to the counting-to-infinity problem (“bad news travels slowly”)

Idea: extend the notion of a distance vector
- To make it easier to detect loops
Path-vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per destination
 - Path vector: send the entire path for each destination
Node can easily detect a loop
- Look for its own node identifier in the path
- E.g., node 1 sees itself in the path “3, 2, 1”

Node can simply discard paths with loops
- E.g., node 1 simply discards the advertisement
Each node can apply local policies

- Path selection: Which path to use?
- Path export: Which paths to advertise?

Examples

- Node 2 may prefer the path “2, 3, 1” over “2, 1”
- Node 1 may not let node 3 hear the path “1, 2”
Border Gateway Protocol

- Interdomain routing protocol for the Internet
 - Prefix-based path-vector protocol
 - Policy-based routing based on AS Paths
 - Evolved during the past 28 years

- 1989 : BGP-1 [RFC 1105], replacement for EGP
- 1990 : BGP-2 [RFC 1163]
- 1991 : BGP-3 [RFC 1267]
- 1995 : BGP-4 [RFC 1771], support for CIDR
- 2006 : BGP-4 [RFC 4271], update
Basic BGP Operation

Establish session

Exchange all active routes

Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages

BGP session between Neighbors (TCP)
A router learns multiple paths to destination
- Stores all of the routes in a routing table
- Applies policy to select a single active route
- … and may advertise the route to its neighbors

Incremental updates
- Announcement
 » Upon selecting a new active route, add own AS to path
 » … and (optionally) advertise to each neighbor
- Withdrawal
 » If the active route is no longer available
 » … send a withdrawal message to the neighbors
A Simple BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
 - AS path (e.g., “7018 88”)
 - Next-hop IP address (e.g., 12.127.0.121)
(some) BGP Attributes

- **AS path**: ASs the announcement traversed
- **Next-hop**: where the route was heard from
- **Origin**: Route came from IGP or EGP
- **Local pref**: Statically configured ranking of routes within AS
- **Multi Exit Discriminator**: preference for where to exit network
- **Community**: opaque data used for inter-ISP policy
In conventional path vector routing, a node has one ranking function, which reflects its routing policy.
Default decision for route selection
- Highest local pref, shortest AS path, lowest MED, prefer eBGP over iBGP, lowest IGP cost, router id

Many policies built on default decision process, but…
- Possible to create arbitrary policies in principal
 » Any criteria: BGP attributes, source address, prime number of bytes in message, …
 » Can have separate policy for inbound routes, installed routes and outbound routes
- Limited only by power of vendor-specific routing language
Example: Local Pref

Higher Local preference values are more preferred

AS 4

AS 3

AS 2

AS 5

local pref = 80

local pref = 90

local pref = 100

13.13.0.0/16

CSE 123 – Lecture 16: Border Gateway Protocol
Shorter AS Paths are more preferred

Example: Short AS Path
Mr. BGP says that path 4 1 is better than path 3 2 1.
BGP Has Lots of Problems

- Instability
 - Route flapping (network x.y/z goes down… tell everyone)
 - Long AS-path decision criteria defaults to DV-like behavior (bouncing)
 - Not guaranteed to converge, NP-hard to tell if it does

- Scalability still a problem
 - >500,000 network prefixes in default-free table today
 - Tension: Want to manage traffic to very specific networks (e.g. multihomed content providers) but also want to aggregate information.

- Performance
 - Non-optimal, doesn’t balance load across paths
Business Relationships

- Neighboring ASes have business contracts
 - How much traffic to carry
 - Which destinations to reach
 - How much money to pay

- Common business relationships
 - Customers pay providers (95% billing model)
 » E.g., Princeton is a customer of USLEC
 » E.g., MIT is a customer of Level3
 - Peers don’t pay peers (exchange equal traffic for free)
 » E.g., UUNET is a peer of Sprint
 » E.g., Harvard is a peer of Harvard Business School

- Routing follows the money (allow inexpensive paths)
Customer/Provider

- Customer needs to be reachable from everyone
 - Provider tells all neighbors how to reach the customer
- Customer does not want to provide transit service
 - Customer does not let its providers route through it

Traffic to the customer

Traffic from the customer
A History of Settlement

- The telephone world
 - LECs (local exchange carriers) (e.g., PacBell, NYNEx)
 - IXCs (inter-exchange carriers) (e.g., Sprint, AT&T)

- LECs MUST provide IXCs access to customers
 - This is enforced by laws and regulation

- When a call goes from one phone company to another:
 - Call billed to the caller
 - The money is split up among the phone systems – this is called “settlement”
Multi-Homing

- Customers may have more than one provider
 - Extra reliability, survive single ISP failure
 - Financial leverage through competition
 - Better performance by selecting better path
 - Gaming the 95th-percentile billing model
For Next Time

- Read P&D 3.5 (Router Implementation)
- Homework 3 due Wed and Project 3 due