Announcements

• Assignment 2 is due today, 11:59 PM
• Assignment 3 will be released today
 – Due Apr 22, 11:59 PM
Burst photography

• Hyperspectral image (HSI) set to RGB image
Burst photography

• Set of standard dynamic range (SDR) images to a high dynamic range (HDR) image
• Super resolution
Super resolution

• Camera motion (e.g., hand shake) causes pixel-level differences over each image in the burst
• Requires subpixel alignment of all images
• Can be used to compute a super resolution image
Super resolution

Figure 10. (Left) A small section of one of 15 low-resolution input images. (Right) An estimate of the texture at 2.0 times higher resolution using the MAP estimator.

Camera and image motion

- Mosaic construction from video or a set of images
- Video stabilization
Camera and image motion

• Image motion is 2D projective transformation
 – Rotating camera
 • Same camera center
 – Imaging a plane
 • Camera center can move
Camera and image motion

Camera motion

Image motion

\[\mathbf{x} = \mathbf{K}\mathbf{R}[\mathbf{I} - \mathbf{\tilde{C}}]\mathbf{X} \]

\[\mathbf{x}' = \mathbf{K}'\mathbf{R}'[\mathbf{I} - \mathbf{\tilde{C}}]\mathbf{X} \]

\[\mathbf{x}' = \mathbf{H}\mathbf{x} \]

\[\mathbf{K}'\mathbf{R}'[\mathbf{I} - \mathbf{\tilde{C}}]\mathbf{X} = \mathbf{H}\mathbf{K}\mathbf{R}[\mathbf{I} - \mathbf{\tilde{C}}]\mathbf{X} \]

\[\mathbf{K}'\mathbf{R}' = \mathbf{H}\mathbf{K}\mathbf{R} \]

\[\mathbf{K}'\mathbf{R}'\mathbf{R}^{-1}\mathbf{K}^{-1} = \mathbf{H} \quad \text{2D projective transformation} \]
Camera and image motion

• Imaging a plane

\[x' = Hx \]

2D projective transformation
Camera and image motion

• Camera motion measurement may be inaccurate or imprecise
 – Initial estimate of image motion
 – Guided feature matching

• Camera motion may be unknown
 – Estimate camera and/or image motion from images directly
 • Direct methods
 • Feature based methods
Camera and image motion

- Mosaic construction from video or a set of images
Mosaic construction from images

• Select one of the images as a reference image ref
• For the remaining images
 – Calculate or estimate the 2D projective transformation $H_{n,\text{ref}}$ from image n to ref
 • Compose 2D projective transformations
 – Transform image under $H_{n,\text{ref}}$
Mosaic construction from images

Rotating camera
Mosaic construction from video

- Set image 1 as the reference image
- For the remaining images
 - Sequentially estimate the 2D projective transformation $H_{n,n-1}$ from the current image n to the previous image $n-1$
 - Compose 2D projective transformations $H_{n,1} = H_{n-1,1}H_{n,n-1}$
 - Transform the image under $H_{n,1}$
Mosaic construction from video

Example
2D projective transform estimation

• Direct methods
 – Estimate directly from spatial derivatives and difference of image intensities using all pixels

• Feature based methods
 – Estimate from a set of feature correspondences
Direct methods

• Given two images J and I, estimate the transform from J to I

• Assumptions
 – Intensity constancy
 \[J(x, y) = I(x + u(x, y), y + v(x, y)) \]
 – Small displacement (u, v)
 \[I_x u + I_y v + I_t = 0 \]

• Requires pyramidal implementation
 – Coarse-to-fine iterative estimation refinement
Feature based methods

• Given a set of feature correspondences between two images J and I, estimate the transform from J to I
Feature based methods

• Establish feature correspondences
 – Feature detection
 • Feature descriptors
 – Putative feature correspondences
 • Feature matching (images) or tracking (video)
 – Outlier rejection
 • Random sample consensus (RANSAC) or M-estimator sample consensus (MSAC)
 – Minimal solution of model (e.g., 2D projective transformation)

• Model estimation
 • Linear and/or nonlinear solution
Feature based methods

• Feature detection
Feature based methods

- Putative feature correspondences
Feature based methods

• Outlier rejection
Outlier rejection

Putative feature correspondences

Inliers

Outliers
Mosaic construction

Composition of transformations accumulates error of each transformation estimate

Registration Errors
Optimization

• Minimization of all errors
 – Simultaneous adjustment of all parameters
 – Cannot be performed sequentially

• Direct

• Feature based
 – 2D block adjustment
Optimization
Limitations

• 2D projective transformation is only valid for rotating camera or planar scene
• Nonplanar scene and translating camera requires 3D model
Camera and image motion

• Video stabilization
Video stabilization

• Estimate frame to frame motion (e.g., similarity transformation)
 – Parameterize motion (e.g., scale, rotation, translation)
 – Over time window centered at current frame
 • Compose transformations such that current frame is reference frame
 • Low pass filter (i.e., smooth) parameters
 • Apply transformation comprised of filtered parameters
Issue: dynamic scene

- Static scene is aligned, not moving objects
- Burst photography
 - Hyperspectral image to RGB image
 - High dynamic range imaging
- Camera and image motion
 - Mosaic construction from images
High dynamic range imaging

Figure 10.16 Merging multiple exposures to create a high dynamic range composite (Kang, Uyttendaele, Winder et al. 2003): (a–c) three different exposures; (d) merging the exposures using classic algorithms (note the ghosting due to the horse’s head movement); (e) merging the exposures with motion compensation.
Mosaic construction from images

Figure 9.14 Final composites computed by a variety of algorithms (Szeliski 2006a): (a) average, (b) median, (c) feathered average, (d) p-norm $p = 10$, (e) Voronoi, (f) weighted ROD vertex cover with feathering, (g) graph cut seams with Poisson blending and (h) with pyramid blending.