Sampling and Aliasing, and
The Discrete Fourier Transform

lmage Processing
CSE 166

Lecture 6



Announcements

* Assighment 2 is due today, 11:59 PM
* Assignment 3 will be released Apr 20
* Reading

— Chapter 4: Filtering in the Frequency Domain



Overview: Image processing in the
frequency domain
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1D impulse function and impulse train
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Sampling
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FIGURE 4.5

(a) A continuous
function. (b) Train
of impulses used to
model sampling.
(c) Sampled
function formed as
the product of (a)
and (b). (d) Sample
values obtained by
mntegration and
using the sifting
property of
impulses. (The
dashed line in (c) is
shown for refer-
ence. It is not part
of the data.)



Sampling

* Fourier transform of sampled function

P =57 3 Flo- )

is an infinite, periodic sequence of copies of
F(p)



Sampling
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The sampling theorem

Fourier transform
of function

Fourier transform of
sampled function
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Recovering F(u) from 'I\f(u)
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Aliasing
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FIGURE 4.11 Illustration of aliasing. The under-sampled function (dots) looks like a sine wave having a frequency
much lower than the frequency of the continuous signal. The period of the sine wave is 2 s, so the zero crossings of
the horizontal axis occur every second. AT 1s the separation between samples.

CSE 166, Spring 2020

11



Fourier transform of
under-sampled
function

|deal lowpass filter
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1D discrete Fourier transform (DFT)

 (Forward) Fourier transform
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Next Lecture

* Filtering in the frequency domain
 Reading

— Chapter 4: Filtering in the Frequency Domain



