CSE 132C Database System Implementation

Exercise 4

Time tip: Roughly 45sec to 1min per 1pt
Common Info: Netflix Schema

Ratings / R

<table>
<thead>
<tr>
<th>RatingID</th>
<th>Stars</th>
<th>RateDate</th>
<th>UID</th>
<th>MID</th>
</tr>
</thead>
<tbody>
<tr>
<td>7254</td>
<td>4.5</td>
<td>12/15/19</td>
<td>839</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Users / U

<table>
<thead>
<tr>
<th>UID</th>
<th>UName</th>
<th>Age</th>
<th>JoinDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Alvarez</td>
<td>39</td>
<td>11/02/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Movies / M

<table>
<thead>
<tr>
<th>MID</th>
<th>Name</th>
<th>Year</th>
<th>Director</th>
</tr>
</thead>
<tbody>
<tr>
<td>492</td>
<td>Parasite</td>
<td>2019</td>
<td>Bong Joon-Ho</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | | |
| | | | |
Q1) [4 x 5pts] You are given two instances of R (R1 and R2) and the following statistics of the number of pages in each relation and the allotted buffer memory size in pages B. Page size is 8 KB. Suppose all attributes are 8 bytes long. Assume UID and MID are uniformly distributed in R. Ignore output write costs. What is the I/O cost (in number of pages) of the following operations using any of the implementations discussed in the lecture?

\[(N_{R1}, N_{R2}, B) = (40000, 25000, 5000)\]

A. Intersection of R1 and R2
B. Union of R1 and R2
C. Set difference R1 - R2
D. Set difference R2 - R1
Exercise

Q2) [3 x 4pts] You are given the following statistics of the number of pages in U and the allotted buffer memory size in pages B. Suppose all attributes are 8 bytes long, except U.Name, which is 40 bytes. Page size is 8 KB. You are also given a clustered AltRID B+ tree index on U with IndexKey (JoinDate, Age). RID length is also 8 bytes. What is the rough I/O cost (in number of pages) of the following operation with the specified implementation?

\((N_U, B) = (10000, 500) \quad \gamma \text{COUNT(DISTINCT Age)}(U) \)

A. Hashing-based aggregate
B. Sorting-based aggregate
C. Index-based aggregate
Exercise

Q3) [3 x 4pts] You are given the following statistics of the number of pages in U and the allotted buffer memory size in pages B. Suppose all attributes are 8 bytes long, except U.Name, which is 40 bytes. Page size is 8 KB. You are also given a clustered AltRID B+ tree index on U with IndexKey (JoinDate, Age). RID length is also 8 bytes. What is the rough I/O cost (in number of pages) of the following operation with the specified implementation?

\[(N_u, B) = (10000, 500) \quad \gamma_{\text{JoinDate, AVG(Age)}}(U)\]

A. Hashing-based aggregate
B. Sorting-based aggregate
C. Index-based aggregate
Exercise

Q4) [3 x 4pts] You are given the following statistics of the number of pages in U and the allotted buffer memory size in pages B. Suppose all attributes are 8 bytes long, except U.Name, which is 40 bytes. Page size is 8 KB. You are also given a clustered AltRID B+ tree index on U with IndexKey (JoinDate, Age). RID length is also 8 bytes. What is the rough I/O cost (in number of pages) of the following operation with the specified implementation?

\[(N_u, B) = (10000, 7000) \quad \gamma \text{COUNT} (\text{DISTINCT Age})(U)\]

A. Hashing-based aggregate
B. Sorting-based aggregate
C. Index-based aggregate
Exercise

Q5) [3pts] Which of the following relational equivalencies hold?

A $R \cup R = R$

B $R \cap R = R$

C $R \Join R = R$

D All of A, B, C

E None of the other options
Q6) [4pts] Which of the following relational equivalencies hold?

A \[\pi_A(R \times S) = \pi_{A \cap R.\star}(R) \times \pi_{A \cap S.\star}(S) \]

B \[\pi_A(R \Join S) = \pi_{A \cap R.\star}(R) \Join \pi_{A \cap S.\star}(S) \]

C Both A and B

D None of the other options
Exercise

Q7) [5pts] Which of the following relational equivalencies hold?

A \(\gamma_{A,COUNT(*)}(R) = \gamma_{A,COUNT(*)}(\pi_A(R)) \)

B \(\gamma_{MAX(B)}(R) = \gamma_{MAX(B)}(\pi_B(R)) \)

C \(\gamma_{SUM(B)}(R) = \gamma_{SUM(B)}(\pi_B(R)) \)

D All of A, B, C

E None of the other options
Exercise

Q8) [5pts] Which of these queries has/have at least 6 possible PQPs based only on the physical operators we saw in class?

A \(\sigma_{\text{Stars} > 4}(R \bowtie M) \)

B \(\pi_{\text{Name}}(\sigma_{\text{Stars} > 4}(R \bowtie M)) \)

C \(\pi_{\text{Name}}(R \bowtie M) \)

D All of A, B, C

E None of the other options
Q9) You are given the following statistics of the number of pages of each relation in the Netflix database shown. Suppose all attributes are 8 bytes long, except U.Name, M.Name, and M.Director, each of is 40 bytes. Assume UID and MID are uniformly distributed in R. Ignore output write costs. Page size is 8 KB. What is the lowest estimate possible of the largest size of the output table of the following query (in # pages) with only the given information?

\[(N_R, N_U, N_M, B) = (80000, 20000, 5000)\]

A. [4pts] \(\pi UID, MID (R) \)

B. [5pts] \(\gamma Director, AVG(Stars) (M \bowtie R) \)

C. [6pts] \(R \bowtie U \bowtie M \)
Exercise

Q10) You are given the following statistics of the number of pages of each relation in the Netflix database shown and the allotted buffer memory size in pages \(B \). Suppose all attributes are \(8 \) bytes long, except \(U\).Name, \(M\).Name, and \(M\).Director, each of is \(40 \) bytes. Assume UID and MID are \textit{uniformly distributed} in \(R \). Ignore output write costs. Page size is 8 KB. No indexes exist in the database.

\[(N_R, N_U, N_M, B) = (50000, 10000, 2000, 5000)\]

A. [4pts] Which key-foreign key join in this database can NOT be executed using just one read of each base table?

B. [6pts] Propose a fully pipelined PQP for this query that can be executed with just one scan of each base table.

\[
\gamma \text{COUNT}(\ast) \left(\sigma \text{UID} = 123 \left(R \bowtie U \right) \right)
\]
Q10) (Continued)

$$(N_R, N_U, N_M, B) = (50000, 10000, 2000, 1000)$$

C. **[8pts]** What is the lowest possible I/O cost of this query using only the operator implementations discussed in the lectures? Consider possible algebraic rewrites too. Note the lower B. Explain your approach in detail.

$$\gamma_{Year, \text{COUNT}(\star)}(R \bowtie M)$$

D. **[10pts]** What is the lowest I/O cost of this query using only hash joins? Note the lower B. Explain your approach in detail.

$$R \bowtie U \bowtie M$$