Ingredients of Logic

DOMAIN OF DISCOURSE: What we want to talk about.

LANGUAGE: To formulate statements. Assign meanings in terms of domain of discourse.

DEDUCTIVE SYSTEM: For drawing inferences within the language.

Propositional logic

Propositional logic is a good vehicle to introduce basic properties of logic. It does not provide means to
determine the truth or falsehood of atomic statements. Instead, it allows to evaluate the truth value of
compound statements given the truth values of its atomic components.

For example,

I like Pat or I like Joe.	Pigs can fly or fish can sing
If I like Pat then I like Joe.	If pigs can fly then fish can sing.
Do I like Joe?	Can fish sing?

We can see that the answer is YES in both cases. The above two sets of statements can be both abstracted
as follows:

\[
\begin{align*}
p \lor q \\
p \rightarrow q \\
q?
\end{align*}
\]

Syntax

PROPOSITIONAL SYMBOLS. An infinite, countable set Prop of symbols. E.g. p,q,r,…

LOGICAL CONNECTIVES: ∨, ∧, ¬, →.

PARENTHESES: (,).

EXPRESSION: string of propositional symbols, parenthesis, and logical connectives.

FORMULAS. The set **Form** of formulas is the smallest set of expressions such that:

1. \(\text{Prop} \subseteq \text{Form} \)
2. \(\text{TRUE} \in \text{Form} \)
3. If \(\phi, \psi \in \text{Form} \) then \((\phi \land \psi), (\phi \lor \psi), (\neg \phi), (\phi \rightarrow \psi) \in \text{Form}\)

Another way to define formulas is as the language defined by the following CFG (with start symbol Form):

- \(\text{Form} \rightarrow \text{Prop} \mid \text{TRUE} \), where Prop stands for any propositional symbol,
- \(\text{Form} \rightarrow (\text{Form} \circ \text{Form}) \), where \(\circ \in \{\lor, \land, \rightarrow\} \)
- \(\text{Form} \rightarrow (\neg \text{Form}) \)

Fact 1 (Unique readability) The above CFG is unambiguous (i.e: each formula it generates has a unique
parse tree).
Semantics

The function of a formula is to create meanings of statements given meanings of atomic statements. The semantics of a formula ϕ with propositional symbols p_1, \ldots, p_n is a mapping associating to each truth assignment θ to p_1, \ldots, p_n a truth value (0 or 1) for ϕ. Semantics is well defined due to Fact 1.

The simplest way to specify semantics is via a truth table.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex.

Q. Can one always find a formula that implements any given semantics? YES, any truth table is realized by a formula. The formula can be found as follows. “Represent” the rows where $\phi = 1$ by conjuncting the true proposition symbols and negations of the false ones. Finally write the disjunction of the results.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>ϕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>$p \land \neg q$</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$\phi : (p \land \neg q) \lor (\neg p \land \neg q)$

Definition 1 Two formulas φ and ψ using the same set of propositional symbols are equivalent if they have the same truth table.

Examples:

(i) $\neg p$ is equivalent to p

(ii) $\neg(p \land q)$ is equivalent to $\neg p \lor \neg q$

(iii) $\neg(p \lor q)$ is equivalent to $\neg p \land \neg q$

(iv) $p \rightarrow q$ is equivalent to $\neg p \lor q$

The equivalences (ii) and (iii) are known as De Morgan’s Laws.

Corollary 2 Every formula is equivalent to a disjunction of conjunctions of propositional symbols or negation of propositional symbols (DNF).

Dual of DNF is CNF. To get ϕ in CNF:

- Describe cases when ϕ is false. Ex. $(p \land q) \lor (\neg p \land q) -$ DNF ψ.
- Note that ϕ is true when $\neg \psi$ is false. Hence, negate ψ using DeMorgan’s laws. Ex. $(\neg p \lor \neg q) \land (p \lor \neg q)$.

There are cases when DNF (resp. CNF) is exponentially larger than the original formula.

Ex. For $(x_1 \lor y_1) \land (x_2 \lor y_2) \land \ldots \land (x_n \lor y_n)$ the equivalent DNF is exponential in size.
Q. Does each truth table have a polynomial size formula implementing it? More precisely, does there exist k such that every truth table with n propositional symbols has a form ϕ of size $\leq n^k$? Answer: NO.

Proof: Assume there exists such k. The number of truth tables for n propositional symbols is 2^{2^n}. The number of formulas of size $\leq n^k$ is $\leq (n + 6)^{n^k}$ (for n propositional symbols, 4 connectives and parentheses.) Clearly, $(n + 6)^{n^k} < 2^{2^n}$, for sufficiently large n.

Basic concepts.

- **Satisfaction.**
 Satisfaction of a formula ϕ by a truth assignment τ. Notation: $\tau \models \phi$ (ϕ is true for τ).

- **Implication.**
 A set of formulas Σ implies ϕ, denoted $\Sigma \models \phi$, iff every truth assignment to the propositional symbols in Σ that satisfies Σ also satisfies ϕ. Note: Σ could be an infinite set of formulas using infinitely many propositional symbols.

Classes of formulas of special interest

- **VALID** - the set of formulas that are always true (tautologies).
 - **Example:** $\text{TRUE}, (p \lor \neg p), (p \rightarrow p), (((p \lor q) \land (p \rightarrow q)) \rightarrow q)$ are valid formulas.

- **UNSAT** - the set of formulas that are never true (unsatisfiable).

- In between: **SAT** - the set of formulas for which there exists a satisfying assignment (not unsatisfiable).

Note. $\phi \in \text{VALID} \iff \neg \phi \in \text{UNSAT}$.

Claim 3 $\Sigma \models \phi \iff (\Sigma \cup \{\neg \phi\}) \in \text{UNSAT}$

Claim 4 SAT is NP-complete.

Proof:

- **SAT \in NP**: guess a satisfying assignment, then verify that the formula is true (a satisfying assignment is a certificate).

- **Hardness. 3COL (graph 3-coloring) \in NP** (there also exists a direct proof). We reduce 3COL to SAT. Let $G = (V, E)$ be a graph with n nodes $\{1, \ldots, n\}$. We use propositional variables $p_{i,g}, p_{i,r}, p_{i,b}$ to indicate that vertex i is colored with green, red, or blue. Construct ϕ as follows.

 $\phi : \bigwedge_{i=1}^{n} (p_{i,g} \lor p_{i,r} \lor p_{i,b}) \land \\
 \bigwedge_{(i,j) \in E} \neg(p_{i,g} \land p_{j,g}) \land \neg(p_{i,r} \land p_{j,r}) \land \neg(p_{i,b} \land p_{j,b})$

Claim 5 $G \in 3\text{COL} \iff \phi \in \text{SAT}$. It is also possible to prove that SAT is NP-complete directly (cf. the Cook-Levine theorem, e.g. see Sipser)

Claim 6 VALID \in co-NP.
HORN We now consider a special class of formulas for which SAT is in polynomial time, denoted HORN. The class HORN consists of conjunctions of Horn clauses. A Horn clause is a disjunction of literals with at most one positive literal. Example of a formula in HORN:

\[p \land (\neg p \lor \neg q \lor s) \land q \land r \land (\neg s \lor \neg r \lor t) \land (\neg t) \]

Note that there are two kinds of possible Horn clauses:

1. clause has 1 positive literal

 \[p \]

 \[p \lor \neg x_1 \lor \ldots \lor \neg x_k : x_1 \land \ldots \land x_k \rightarrow p \]

2. no positive literal

 \[\neg x_1 \lor \ldots \lor \neg x_k : \neg(x_1 \land \ldots \land x_k) \]

 \[x_1 \land \ldots \land x_k \rightarrow false \]

Claim: For every finite set \(\Sigma \) of HORN clauses, checking whether \(\Sigma \) is satisfiable is in \(P \)

Idea: Let \(\Sigma_1 \) be the subset of \(\Sigma \) containing only clauses of type 1 (i.e. one positive literal), and \(\Sigma_2 \) the subset of \(\Sigma \) containing clauses of type 2 (i.e no positive literals). Note first that \(\Sigma_1 \) is satisfiable. To obtain a minimum satisfying assignment \(\sigma \), start with literals from single-literal clauses and crank the rules. It now remains to check consistency of \(\sigma \) with the clauses in \(\Sigma_2 \). To do this, it is enough to check that for each clause \(x_1 \land \ldots \land x_k \rightarrow false \) in \(\Sigma_2 \), \(\sigma \) is not true for all of \(x_1, \ldots, x_k \).

More concretely stated, to find the minimum satisfying assignment \(\theta \) (i.e: the least number of literals that must be set to true to satisfy the clauses) for \(\Sigma \):

1. Set the propositions in single literal clauses of \(\Sigma_1 \) to true (e.g. \(\{p, q, r\} \))
2. For each rule \((x_1 \land x_2 \ldots \land x_k) \rightarrow p \) in \(\Sigma_1 \): If \(x_1, x_2 \ldots x_k \) are set to true, set \(p \) to true. Repeat this step while there are changes to \(\theta \).
3. Answer yes iff \(\{x_1, x_2 \ldots x_k\} \not\subseteq \theta \) for any \(\neg(x_1 \land \ldots \land x_k) \) in \(\Sigma_2 \).

Example Consider the set \(\Sigma \) of Horn clauses:

\[
\begin{align*}
p \\
q \\
r \\
\neg p \lor \neg q \lor s \\
\neg s \lor \neg r \lor t \\
\neg t
\end{align*}
\]

The set \(\Sigma_1 \) of clauses of type 1 consists of the first 5 clauses, and \(\Sigma_2 \) consists of the last clause. Note that \(\Sigma_1 \) can also be written as:

\[
\begin{align*}
p \\
q \\
r \\
p \land q \rightarrow s \\
s \land r \rightarrow t
\end{align*}
\]

The minimum satisfying assignment for \(\Sigma_1 \) is obtained as follows:
1. start with \(\{p, q, r\} \)
2. use the first implication to infer \(s \)
3. use the second implication to infer \(t \)

Thus, the minimum satisfying assignment makes \(\{p, q, r, s, t\} \) true. This contradicts \(\Sigma_2 \), which states that \(t \) must be false. Thus, \(\Sigma \) is not satisfiable.

Compactness Theorem

The Compactness Theorem allows to reduce satisfiability of infinite sets of formulas to satisfiability of finite sets. It is most useful in the context of first-order logic. Let \(\Sigma \) be an infinite set of formulas over \(\text{Prop} \) (note that \(\Sigma \) is countable since \(\text{Prop} \) is countable). We say that \(\Sigma \) is finitely satisfiable iff every finite subset \(\Sigma_0 \subseteq \Sigma \) is satisfiable.

Theorem: An infinite set \(\Sigma \) of propositional formulas is satisfiable iff it is finitely satisfiable.

In order to prove the Compactness Theorem, we begin with some preliminary definitions and observations.

Definition 7 Consider a truth assignment \(\tau \) for \(\text{Prop} \). The Theory of \(\tau \), denoted \(Th(\tau) \), is the set of formulas over \(\text{Prop} \) satisfied by \(\tau \), that is, \(\{\phi \mid \tau \models \phi\} \).

Definition 8 A set \(\Delta \) of formulas is complete iff for every formula \(\phi \), either \(\phi \in \Delta \) or \(\neg \phi \in \Delta \).

- Note: \(Th(\tau) \) is complete. Indeed, for every formula \(\phi \), \(\tau \models \phi \) or \(\tau \models \neg \phi \), so \(\phi \in Th(\tau) \), or \(\neg \phi \in Th(\tau) \).
- Note: Suppose \(\Delta \) is complete and satisfiable. Then there is a unique truth assignment satisfying \(\Delta \): \(\tau_\Delta(p) \) is true iff \(p \in \Delta \).

Lemma If \(\Delta \) is a complete and finitely satisfiable set of formulas, then \(\tau_\Delta \models \phi \) iff \(\phi \in \Delta \).

Proof: The proof is by structural induction on \(\phi \). We can assume without loss of generality that \(\phi \) uses only \(\neg, \land \), since this is a functionally complete set of operators.

- **Base Case:** If \(\phi = p \), \(\tau_\Delta(p) \) is true iff \(p \in \Delta \) (by definition).

- **Induction:**
 - If \(\phi = \neg \theta \), then \(\tau_\Delta \models \phi \) iff \(\tau_\Delta \not\models \theta \) iff \(\theta \not\in \Delta \) (by induction hypothesis) iff \(\neg \theta \in \Delta \) (by completeness).
 - If \(\phi = \theta_1 \land \theta_2 \), then \(\tau_\Delta \models \phi \) iff \(\tau_\Delta \models \theta_1 \) and \(\tau_\Delta \models \theta_2 \). By induction, this holds iff \(\theta_1 \in \Delta \) and \(\theta_2 \in \Delta \). We show that \((\theta_1 \land \theta_2) \in \Delta \) iff \(\theta_1 \in \Delta \) and \(\theta_2 \in \Delta \):
 - Only if: the proof is by contradiction. Suppose \((\theta_1 \land \theta_2) \in \Delta \) but \(\theta_1 \not\in \Delta \). By completeness, \(\neg \theta_1 \in \Delta \). Then \(\{(\theta_1 \land \theta_2), \neg \theta_1\} \subseteq \Delta \). This is unsatisfiable, contradicting the finite satisfiability of \(\Delta \). Similarly for \(\theta_2 \).
 - If: Suppose \(\theta_1 \in \Delta \) and \(\theta_2 \in \Delta \). We show, again by contradiction, that \((\theta_1 \land \theta_2) \in \Delta \). Suppose \((\theta_1 \land \theta_2) \not\in \Delta \). Then by completeness, \(\neg (\theta_1 \land \theta_2) \in \Delta \), so \(\{\neg (\theta_1 \land \theta_2), \theta_1, \theta_2\} \subseteq \Delta \). This is unsatisfiable, contradicting the finite satisfiability of \(\Delta \). Thus, \((\theta_1 \land \theta_2) \in \Delta \).
By the above lemma, if Δ is complete and finitely satisfiable, then $\tau_\Delta \models \Delta$, so Δ is satisfiable. Therefore, to prove that Σ is satisfiable, it is enough to show that Σ is contained in a complete, finitely satisfiable set of formulas Δ.

We construct Δ as follows. We say that a formula φ is settled by Σ if $\varphi \in \Sigma$ or $\neg \varphi \in \Sigma$. First, enumerate all formulas $\varphi_1, \varphi_2, \ldots$ that are not settled by Σ. We define by induction a sequence of formulas $\{\Delta_i\}_{i \geq 0}$, where $\Sigma \subseteq \Delta_i$ and Δ_i contains, for every $j \leq i$ either φ_j or $\neg \varphi_j$ and is finitely satisfiable:

- $\Delta_0 = \Sigma$. Then Δ_0 is finitely satisfiable.
- Inductively, assume that Δ_i is finitely satisfiable and contains Σ. It must be the case that either $\Delta_i \cup \{\varphi_{i+1}\}$ or $\Delta_i \cup \{\neg \varphi_{i+1}\}$ are finitely satisfiable. Suppose not. Then there exist finite subsets X and Y of Δ_i such that $X \cup \{\varphi_{i+1}\}$ and $Y \cup \{\neg \varphi_{i+1}\}$ are not satisfiable. But $X \cup Y \subseteq \Delta_i$ is satisfiable by some τ, and τ must satisfy either φ_{i+1} or $\neg \varphi_{i+1}$, so $X \cup \{\varphi_{i+1}\}$ or $Y \cup \{\neg \varphi_{i+1}\}$ is satisfiable, and we have arrived at a contradiction. Consequently, if $\Delta_i \cup \{\varphi_{i+1}\}$ is finitely satisfiable, then let $\Delta_{i+1} = \Delta_i \cup \{\varphi_{i+1}\}$. If $\Delta_i \cup \{\neg \varphi_{i+1}\}$ is finitely satisfiable, then $\Delta_{i+1} = \Delta_i \cup \{\neg \varphi_{i+1}\}$.

Now let $\Delta = \bigcup_{i=0}^{\infty} \Delta_i$. Δ is complete, since every formula φ_i or its negation $\neg \varphi_i$ is in Δ. Lastly, we must show that Δ is finitely satisfiable. Suppose not. Then there is a finite subset $X \subseteq \Delta$ that is not satisfiable. Since X is finite, there must be some m such that $X \subseteq \Delta_m$, but this contradicts the finite satisfiability of Δ_m, which was proven above.

Example 1 A simple application of the compactness theorem: prove that an infinite, countable graph is 3-colorable iff every finite subgraph is 3-colorable.

Deductive Systems for Propositional Logic

Deductive Systems

Informally, a deductive system is a mechanism for proving new statements from given statements. Let Σ be a set of given statements (propositional formulas). In a deductive system, there are two components: inference rules and proofs.

1. **Inference rule**: An inference rule indicates that if certain set of statements (formulas) $\varphi_1, \ldots, \varphi_k$ is true, then a given statement φ must be true. An inference rule H is denoted as

 $$H: \frac{\varphi_1, \ldots, \varphi_k}{\varphi}.$$

 Example (modus ponens): $p \rightarrow q \quad \frac{p}{q}$

2. **Proofs**: A proof of φ from Σ is a sequence of formulas $\varphi_1, \ldots, \varphi_n$ such that $\varphi_n = \varphi$ and for all $i \leq n$
 - $\varphi_i \in \Sigma$, or
 - There exist $i_1, \ldots, i_k < i$ such that,

 $$\frac{\varphi_{i_1}, \ldots, \varphi_{i_k}}{\varphi_i}$$

 is an inference rule.

If φ has a proof from Σ using inference rule H we write $\Sigma \vdash_H \varphi$

Desirable Properties:
• **Soundness**: If $\Sigma \vdash_H \varphi$ then $\Sigma \models \varphi$ (All sentences provable from Σ are implied by Σ.) This property is fundamental for the correctness of the deductive system.

• **Completeness**: If $\Sigma \models \varphi$ then $\Sigma \vdash_H \varphi$ (All sentences implied by Σ are provable.) This is a desirable property in deductive systems.

Hilbert’s System

Hilbert’s System is an example of a sound and complete deductive system for proving valid statements starting from a given set of three tautologies (“axioms”). Digression: the system uses only \neg, \to. To see that these operators are functionally complete, note that we can express \land in the following way: $p \land q \equiv \neg(\neg p \to \neg q)$.

Axioms

- A1 (Simplification): $(p \to (q \to p))$
- A2 (Frege’s Axiom): $((p \to (q \to r)) \to ((p \to q) \to (p \to r)))$
- A3 (Reductio Ad Absurdum): $((\neg p \to q) \to ((\neg p \to \neg q) \to p))$

Inference Rules

- Modus Ponens: $\frac{\phi, \phi \to \psi}{\psi}$
- Substitution: $\frac{\phi}{\phi[\theta]}$, where θ substitutes an arbitrary formula to a propositional symbol in ϕ.

Note the following subtlety about the substitution rule: in general, $\phi \to \phi[\theta]$ is *not a tautology*. (Example: $\phi = p$ and $\theta(p) = p \land \neg p$.) However, if ϕ is valid, then $\phi[\theta]$ is also valid. This is good enough, since the deductive system is only used to prove validity of formulas. The following can be shown:

Theorem 9 Let H denote Hilbert’s System. For every formula φ, $\{A1, A2, A3\} \models \varphi$ iff $\{A1, A2, A3\} \vdash_H \varphi$.

Since A1, A2, and A3 are tautologies, this makes Hilbert’s System sound and complete for proving valid propositional formulas.

Natural Deduction

Natural deduction is a collection of inference rules and proof schemas, capturing aspects of reasoning in an appealing way.

Let \bot denote contradiction, falsity. The following are the inference rules of natural deduction:

- **Modus Ponens**: $\frac{\phi, \phi \to \psi}{\psi}$
- **Substitution**: $\frac{\phi}{\phi[\theta]}$, where θ substitutes an arbitrary formula to a propositional symbol in ϕ.
Rule (13) allows us to prove valid statements of the form “If φ then ψ” even if we don’t know the truth value of the φ statement (i.e., φ is not in the set Σ of known valid statements). Indeed, for this rule, we start assuming φ is valid. If we can conclude ψ is valid in a world where $\Sigma \cup \varphi$ are valid, then we conclude that $\varphi \rightarrow \psi$ is valid, and we release the assumption φ is valid. Similarly, rules (14)-(16) describe proof schemas using assumptions that are released once the proof (a sub-proof of the overall proof) is completed. Applications of rules (13)-(16) may be nested, in which case each rule is applied in the context of a current set of assumptions (the obvious scoping rules apply). In a proof, each assumption must be eventually released (this is analogous to well-formed parenthesis). The detailed definition is a bit tedious but straightforward.

We now show how to apply the above inference rules.

Example 2 One of De Morgan’s Laws

$$\neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$$

Proof: By rule (8) if we can prove $\neg(\varphi \lor \psi) \rightarrow (\neg \varphi \land \neg \psi)$ and $(\neg \varphi \land \neg \psi) \rightarrow \neg(\varphi \lor \psi)$ we can infer the desired result.
To prove the first direction, we use rule 13 and assume the hypothesis \(\neg(\varphi \lor \psi) \). Then

\[
\begin{align*}
\neg(\varphi \lor \psi) & \quad \text{// Assumption 1} \\
\varphi & \quad \text{// Assumption 1.1} \\
\varphi \lor \psi & \quad \text{// by rule 11} \\
\bot & \quad \text{// by rule 5} \\
\neg\varphi & \quad \text{// by rule 14; release Assumption 1.1} \\
\psi & \quad \text{// Assumption 1.2} \\
\varphi \lor \psi & \quad \text{// by rule 12} \\
\bot & \quad \text{// by rule 5} \\
\neg\psi & \quad \text{// by rule 14, release Assumption 1.2} \\
\neg\varphi \land \neg\psi & \quad \text{// by rule 1} \\
\neg(\varphi \lor \psi) \rightarrow (\neg\varphi \land \neg\psi) & \quad \text{// by rule 13, release Assumption 1}
\end{align*}
\]

We now prove the second direction.

\[
\begin{align*}
\neg\varphi \land \neg\psi & \quad \text{// Assumption 1} \\
\neg\varphi & \quad \text{// by rule 2} \\
\neg\psi & \quad \text{// by rule 3} \\
\varphi \lor \psi & \quad \text{// Assumption 1.1} \\
\varphi & \quad \text{// Assumptions 1.1.1} \\
\psi & \quad \text{// by rule 5} \\
\bot & \quad \text{// by rule 16, release Assumptions 1.1.1} \\
\neg(\varphi \lor \psi) & \quad \text{// by rule 14, release Assumption 1.1} \\
(\neg\varphi \land \neg\psi) \rightarrow \neg(\varphi \lor \psi) & \quad \text{// by rule 13, release Assumption 1}
\end{align*}
\]

Example 3 Prove Pierce’s Law: \((A \rightarrow B) \rightarrow A\).

Proof:

\[
\begin{align*}
(A \rightarrow B) \rightarrow A & \quad \text{// Assumption 1} \\
\neg A & \quad \text{// Assumption 1.1} \\
A & \quad \text{// Assumption 1.1.1} \\
\bot & \quad \text{// by rule 5} \\
B & \quad \text{// by rule 7} \\
A \rightarrow B & \quad \text{// by rule 13, release Assumption 1.1.1} \\
A & \quad \text{// by Assumption [1] and rule 4} \\
\bot & \quad \text{// by rule 5} \\
A & \quad \text{// by rule 14, release Assumption 1.1} \\
((A \rightarrow B) \rightarrow A) \rightarrow A & \quad \text{// by rule 13, release Assumption 1}
\end{align*}
\]

Fact 2 Natural deduction is sound.

To show that natural deduction is also complete we need to introduce propositional resolution.
Propositional Resolution

Resolution is another procedure for checking validity of formulas indirectly, by showing unsatisfiability of their negation. A formula in this approach is a conjunction of clauses, where a clause is a disjunction of literals, described in detail below. The core of this method is a single resolution rule also described below.

Terminology

- **Clause**: A clause is a propositional formula composed by disjunction of literals. For example, $p \lor q \lor \neg r$. It is usually denoted as the set of literals, eg. $\{ p, q, \neg r \}$. The empty clause, denoted as \Box, is the disjunction of no literals. It is always false.

- **Formula**: A set of clauses, each of them satisfiable. For example, $\{ \{ p, \neg q \}, \{ r \}, \{ \neg r, s \} \}$ represents the CNF formula $(p \lor \neg q) \land (r) \land (\neg r \lor s)$. Thus, intuitively we would like to find if there is a truth assignment such that at least one literal is true in every clause of the formula.

The empty formula, denoted as \emptyset, is the set that contains no clauses. It is always true.

A proof system for resolution contains a single resolution rule, which, given clauses C (containing some literal y) and C' (containing some literal $\neg y$), allows to infer a new clause, called the resolvent $\text{res}_y(C, C')$ of C and C' (with respect to y). The resolvent is defined as follows.

$$\text{res}_y(C, C') = (C - \{ y \}) \cup (C' - \{ \neg y \}).$$ \hfill (17)

We denote by $\text{Res}(\varphi)$ the smallest set of clauses containing φ and closed under resolvent. In other words, $\text{Res}(\varphi)$ consists of all clauses that can be obtained from φ by repeated applications of the resolvent operator.

Example 4 If $C = \{ p, y \}$ and $C' = \{ q, \neg y \}$, then $\text{res}_y(C, C') = \{ p, q \}$.

It is possible to show that the resolution rule so defined indeed computes a clause that can be inferred using natural deduction.

Claim 10 Let C and C' be any two clauses such that $y \in C$ and $\neg y \in C'$. Then $C \land C' \rightarrow \text{res}_y(C, C')$ is valid.

In order to prove the validity of a formulas ψ, we will prove the negated formula $\neg \psi$ is unsatisfiable. To prove unsatisfiability of a formula φ, we need to define the resolution refutation of the formula φ.

Definition 11 The resolution refutation tree of the formula φ is a tree rooted at the empty clause, where every leaf is a clause in φ and each internal node is computed as the resolvent of the two corresponding children.

Notice that clauses of φ can appear repeated as leaves. From Claim 10 we can conclude that

Claim 12 If there exists a resolution refutation tree for formula φ, then $\varphi \rightarrow \Box$, that is, φ is unsatisfiable.

Example 5 A resolution refutation tree for $\varphi = (p \lor q) \land (\neg q \lor r) \land (\neg r) \land (\neg p \lor \neg s) \land (s \lor \neg t) \land (t)$ is shown in Figure 1.

The order in which clauses are selected to compute the resolvent matters when computing the resolution refutation tree, as the following example shows.

Example 6 Figure 2 shows an unsuccessful attempt to obtain a resolution refutation tree for the formula $\psi = (p \lor q) \land (\neg q \lor r) \land (\neg p) \land (\neg q)$. Such tree exists, as it is shown in Figure 3.
Properties of Propositional Resolution

Soundness

Propositional resolution is sound, that is, if there exists a resolution refutation tree for a given formula φ, then φ must be unsatisfiable.

Theorem 13 For any formula φ, if $\square \in Res(\varphi)$, then $\varphi \rightarrow \square$ (so φ is unsatisfiable).

Completeness

Propositional resolution is complete, that is, if a given formula φ is unsatisfiable, then φ has a resolution refutation tree.

Theorem 14 For any formula φ, if φ is unsatisfiable, then $\square \in Res(\varphi)$.

Proof: We show the contrapositive, i.e. if $\square \not\in Res(\varphi)$ then φ is satisfiable. We prove this by induction on the number of variables in φ.

Basis: We have one variable, say p. All possible clauses of φ are either $\{ p \}$ and/or $\{ \neg p \}$. If φ is unsatisfiable then both clauses occur, and therefore $\square \in Res(\varphi)$.
Induction step: Suppose the hypothesis is true for formulas with fewer than \(n \) variables (\(n > 1 \)). Let \(\varphi \) be a formula with \(n \) variables. Suppose \(\Box \notin \text{Res}(\varphi) \), we will show \(\varphi \) is satisfiable. Let \(p \) be a variable of \(\varphi \). Then either \(\{ p \} \notin \text{Res}(\varphi) \) or \(\{ \neg p \} \notin \text{Res}(\varphi) \) (if both hold then \(\Box \in \text{Res}(\varphi) \) immediately). First we assume \(\{ \neg p \} \notin \text{Res}(\varphi) \). We define the formula \(\varphi^p \) as containing all clauses that do not contain \(\{ p \} \) and where the literal \(\neg p \) has been removed from each clause (in other words, \(\varphi^p \) is the formula resulting from setting \(p \) to true). Formally,

\[
\varphi^p = \{ C - \{ \neg p \} : C \in \varphi, p \notin C \} \tag{18}
\]

Intuitively this denotes the formula that we have to satisfy assuming \(p \) is set to true. By removing \(p \) we can apply induction. First, notice that

\[
(\dagger) \text{Res}(\varphi^p) \subseteq \{ C - \{ \neg p \} : C \in \text{Res}(\varphi), p \notin C \}
\]

Indeed, this follows from the fact that \(\varphi^p \subseteq \{ C - \{ \neg p \} : C \in \text{Res}(\varphi), p \notin C \} \), and the fact that \(\{ C - \{ \neg p \} : C \in \text{Res}(\varphi), p \notin C \} \) is closed under resolvent (because \(\text{res}_q(C_1 - \{ \neg p \}, C_2 - \{ \neg p \}) = \text{res}_q(C_1, C_2) - \{ \neg p \} \) for \(q \neq p \)).

From \((\dagger) \), the assumption that \(\Box \notin \text{Res}(\varphi) \), and the assumption that \(\{ \neg p \} \notin \text{Res}(\varphi) \), it follows that \(\Box \notin \text{Res}(\varphi^p) \). By the induction hypotheses, \(\varphi^p \) is satisfiable. Then \(\varphi \) is satisfiable by an extension of the satisfying assignment of \(\varphi^p \) with \(p \) equal true. The case \(\{ p \} \notin \text{Res}(\varphi) \) is analogous.

Completeness of Natural Deduction

Theorem 15 Let \(H \) be the set of inference rules of Natural Deduction. If \(\Sigma \models \varphi \) then \(\Sigma \vdash_H \varphi \).

The idea behind the proof of completeness of natural deduction is as follows. Suppose \(\varphi \) is valid (then \(\neg \varphi \) is unsatisfiable). We mimic in natural deduction a resolution refutation for \(\neg \varphi \), building a proof of \(\bot \) from \(\neg \varphi \). We then apply the contradiction rule 15

\[
\neg \varphi \\
\vdots \\
\bot
\]

\(\varphi \)

to infer validity of \(\varphi \).

Proof: (Sketch) Given a formula \(\varphi \) valid under \(\Sigma \), we perform the following steps:

1. Prove that \(\neg \varphi \) is equivalent to some \(\psi \), where \(\psi \) is in CNF.
2. Prove that \(\psi \rightarrow \text{Res}(\psi) \), for all \(\psi \).
3. By completeness of resolution, if \(\psi \) is unsatisfiable then \(\Box \in \text{Res}(\psi) \). Therefore, \(\{ p \} \) and \(\{ \neg p \} \in \text{Res}(\psi) \) for some literal \(p \). This implies \(\text{Res}(\psi) \rightarrow \bot \).
4. Conclude that \(\neg \varphi \rightarrow \bot \) and therefore \(\varphi \) is valid.

Step (1) can be easily done by repeated application of De Morgan’s laws. Step (2) can be proven using natural deduction. Finally, step (3) can be proven by induction on the number of steps to obtain \(\text{Res}(\psi) \). Clearly, each step can be simulated using natural deduction.

It is very likely that any algorithm for propositional resolution will take very long on the worst case (recall that checking validity of a formula \(\varphi \) is co-NP complete).
Linear Resolution and PROLOG

Linear resolution is a particular resolution strategy that always resolves the most recent resolvent with some clause which is not used again. The resolution refutation tree so obtained is therefore linear. It is possible to prove that, if the set of clauses are Horn clauses, there exists a linear resolution strategy for any formula. This is, linear resolution is complete for the set of Horn clauses.

The language PROLOG uses resolution on a set of Horn clauses. Each clause is called a *program clause*. Moreover, clauses composed by a single literal are called *facts*. A clause with a single negated literal is called a *query*. Figure 4 shows a comparison of the different notations. In PROLOG, to query a statement \(t \), the idea is to negate the statement (\(\neg t \)) and to perform resolution with the set of known true statements. If a resolution refutation tree is found, the statement \(t \) is implied by the program.

<table>
<thead>
<tr>
<th>Clausal Form</th>
<th>Conventional Syntax</th>
<th>PROLOG Syntax</th>
<th>Terminology</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ p }</td>
<td>(p)</td>
<td>(p .)</td>
<td>facts</td>
</tr>
<tr>
<td>{ q }</td>
<td>(q)</td>
<td>(q .)</td>
<td></td>
</tr>
<tr>
<td>{ r }</td>
<td>(r)</td>
<td>(r .)</td>
<td></td>
</tr>
<tr>
<td>{ s, \neg p, \neg q }</td>
<td>(p \land q \rightarrow s)</td>
<td>(s:-p,q .)</td>
<td>program clauses</td>
</tr>
<tr>
<td>{ t, \neg s, \neg r }</td>
<td>(s \land r \rightarrow t)</td>
<td>(t:-s,r .)</td>
<td></td>
</tr>
<tr>
<td>{ \neg t }</td>
<td>(t \rightarrow \bot)</td>
<td>(?-t .)</td>
<td>query</td>
</tr>
</tbody>
</table>

Figure 4: Compared PROLOG syntax

Example 7 An example of linear resolution for the formula \(\phi = (p \land (q) \land (r) \land (t \lor \neg s \land \neg r) \land (s \lor p \lor \neg q) \land (\neg t) \) is shown in Figure 5.
Figure 5: Linear resolution tree for φ.