CSE 190D
Database System Implementation

Arun Kumar

Topic 7.2: Advanced “Big Data” Systems

Not included for final exam
“Big Data” Systems

- Parallel RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems (Optional)
 - The MapReduce/Hadoop Craze
 - Spark and Other Dataflow Systems
 - Key-Value NoSQL Systems
 - Graph Processing Systems
 - Advanced Analytics/ML Systems
Key-Value NoSQL Systems

- **Simple API**: *get* and *put* unique records very quickly!
 - Records usually uniquely identified by a “key”; information in record is the “value” (could be general JSON object)
- Used extensively by Web companies, e.g., get product record quickly and update stock count, update Facebook status, etc.
- Need high availability, high scalability, “eventual” consistency
- **Idea**: Discard ACID and 30+ years of DB lessons; use “BASE” (Basically Available, Soft state, and Eventually consistent)
- The new RDBMS-hating “movement” was christened “NoSQL”
Key-Value NoSQL Systems

Also called *transactional* NoSQL (read-write)

Hadoop / Spark aka *analytical* NoSQL (read mostly)
Key-Value NoSQL Systems

- Recent work on relaxed consistency models with guarantees in between full ACID and fuzzy best-effort BASE/Eventual

5 consistency levels of Microsoft Azure CosmosDB (a geodistributed cloud-native DBMS)

My bias: Key area of research at the intersection of DB & distributed systems!

Advertisement: Take CSE 223B to learn more!
“Big Data” Systems

- Parallel RDBMSs
- Beyond RDBMSs: A Brief History
- “Big Data” Systems (Optional)
 - The MapReduce/Hadoop Craze
 - Spark and Other Dataflow Systems
 - Key-Value NoSQL Systems
 - Graph Processing Systems
 - Advanced Analytics/ML Systems
Graph Processing Systems

- Not a workload DB folks used to care much about
- Specialized graph systems have been around for years (Neo4j), but more popular now (Facebook, LinkedIn, etc.)
- **Data Model**: set of nodes, and set of (multi-)edges
- **Ops/queries**: nearest neighbors, shortest path, connectivity, density, cliques, etc.
Graph Processing Systems

Can be handled as an application on an RDBMS, but might be inefficient – transitive closure, repeated self-joins, etc.
Graph Processing Systems

Advertisement: “Graph Analytics” course on Coursera by UCSD
“Big Data” Systems

❖ Parallel RDBMSs
❖ Beyond RDBMSs: A Brief History
❖ “Big Data” Systems (Optional)
❖ The MapReduce/Hadoop Craze
❖ Spark and Other Dataflow Systems
❖ Key-Value NoSQL Systems
❖ Graph Processing Systems
❖ Advanced Analytics/ML Systems
Advanced Analytics/ML Systems

❖ Systems for mathematically advanced data analysis ops (not just SQL aggregates):
 Statistics, machine learning, data mining, …

❖ **Two Orthogonal Dimensions of Categorization:**
 Packages of Algorithms vs. Linear Algebra Systems
 Layered on Existing Platforms vs. Customized Systems
Advanced Analytics/ML Systems

 Packages of Algorithms Layered on Existing Platforms:

In-RDBMS: use RDBMS’s UDFs/UDAs
Oracle DM, MADlib, Bismarck (Wisconsin), etc.

On-Hadoop/Spark/etc.: use their APIs
Apache Mahout, Spark MLlib, AzureML, etc.

Key challenge: Rewrite statistical and ML algorithms to use the extensibility abstractions of these systems

My bias: Key area of research in DB & ML intersection
Customized Systems/Frameworks:

TensorFlow (Google): esp. good for “deep learning”

GraphLab (UWash): graph-parallel analytics; uses MPI

DeepDive (Stanford): for statistical relational learning

(uses an RDBMS for some parts)

Each system has its own set of challenges and ideas

My bias: Key area of research in DB & ML & systems intersection
Advanced Analytics/ML Systems

❖ Linear Algebra Systems (mostly, R-based or R-like):
 R is incredibly popular for statistical analysis

❖ Layered on Existing Platforms:
 In-RDBMS: Oracle R Enterprise, SAP HANA R
 Others: SystemML-on-Spark, SparkR

❖ Customized Platforms:
 ScaLAPACK, Microsoft Revolution R

My bias: Is (was?) a focus area for industrial R&D
Summary: Scalable and efficient advanced analytics/ML is crucial for unlocking the value of “Big Data”

If you are interested in learning more about this topic, read my book (the first on ML systems!) at:

Advertisement: This topic is also the focus of my research Winter’20: DSC 102 “Systems for Scalable Analytics”
MapReduce, Spark, and Big Data Systems are **NOT included for the final exam**!

Thank you for taking CSE 190D!