Structure from Motion

Introduction to Computer Vision
CSE 152
Lecture 9

Announcements

• HW2 assigned
• Midterm moved to Monday 5/13 – next class after HW2 due date.
Under perspective projection, the mapping from a plane to a plane is given by a linear transformation of homogeneous coordinates (called a projective transformation or homography).

Question: Where are the epipoles in the rectified image?
How is warping done? Forward Method

- Input: Source image: I and
 Rectification matrix H
- For each corner c_s of Source image in
 homogenous coordinates, compute
 $c_t = Hc_s$
- Compute smallest and largest x and y
 of c_t’s, determine bounding box on
 target image, create target image T
 with size of bounding box.
- For each pixel coordinate p_s
 (homogenous) in the Source image,
 compute location in the Target image
 as $p_t = Hp_s$. Copy $I(p_s)$ to $T(p_t)$

Problem with Forward Method

- There’s no guarantee that every pixel
 in Target Image will be written to.
- If Target Image is larger than Source
 or Target is highly stretched, there
 may be missing points that appear as
 speckles or lines.
How is warping done? Backward method

- Input: Source image: I and rectification matrix H
- For each corner \(c_s \) of Source image in homogenous coordinates, compute \(c_t = Hc_s \)
- Compute smallest and largest x and y of \(c_t \)'s, determine bounding box on target image, create target image T with size of bounding box.
- For each pixel coordinate \(p_t \) (homogenous) in the Target, compute location in the Source as \(p_s = H^{-1}p_t \)
 - If \(p_s \) is within source image, copy \(I(p_s) \) to \(T(p_t) \)

Estimate 3D structure from images
How many views and how many points are needed to solve this?

Consider M images of N points, how many unknowns

1. Affix world coordinate system to location of first camera frame: $(M-1)*6$ unknowns for cameras
2. 3-D Structure: $3*N$ unknowns for points
3. Can only recover structure and motion up to scale factor (one fewer unknown

Total number of unknowns: $(M-1)*6+3*N-1$

Total number of measurements: $2*M*N$

Solution is possible when more measurements than unknowns: $(M-1)*6+3*N-1 \leq 2*M*N$

Some values of N and M satisfying this:

- $M = 2, \ N = 5$
- $M = 3, \ N = 4$

Two view structure from motion
The vectors $\overrightarrow{OP} \cdot \overrightarrow{OO'}$ and $\overrightarrow{O'P'}$ are coplanar

$$\overrightarrow{OP} : [\overrightarrow{OO'} \times \overrightarrow{O'P'}] = 0$$

$$\pmb{1} \cdot \left[\begin{array}{c} \pmb{t}_2 \times (\pmb{R} \cdot \pmb{p}'') \end{array} \right] = 0$$

$\pmb{1} \pmb{p}^T \pmb{E} \cdot \pmb{p}' = 0 \text{ with } \pmb{E} = \left[\left(\pmb{t}_2 \right)_x \right] \pmb{R}$

Essential Matrix
(Longuet-Higgins, 1981)

The Eight-Point Algorithm (Longuet-Higgins, 1981)

Input: 8 corresponding points in two images

$\pmb{1} \pmb{p}_i = \pmb{K}_1^{-1} \pmb{q}_i \quad \pmb{2} \pmb{p}'_i = \pmb{K}_2^{-1} \pmb{q}'_i$

$\pmb{1} \pmb{p}^T \pmb{E} \cdot \pmb{p}' = 0 \text{ with } \pmb{E} = \left[\left(\pmb{t}_2 \right)_x \right] \pmb{R}$

$\begin{bmatrix} \pmb{E}_{11} & \pmb{E}_{12} & \pmb{E}_{13} \\ \pmb{E}_{21} & \pmb{E}_{22} & \pmb{E}_{23} \\ \pmb{E}_{31} & \pmb{E}_{32} & \pmb{E}_{33} \end{bmatrix} \begin{bmatrix} \pmb{u}' \\ \pmb{v}' \\ 1 \end{bmatrix} = 0$

Set \pmb{E}_{33} to 1
- Use 8 points (\pmb{u}_i, \pmb{v}_i), $i=1..8$

$\begin{bmatrix} \pmb{u}_1 \pmb{u}_1' \pmb{u}_1'' \\ \pmb{u}_2 \pmb{u}_2' \pmb{u}_2'' \\ \pmb{u}_3 \pmb{u}_3' \pmb{u}_3'' \\ \pmb{u}_4 \pmb{u}_4' \pmb{u}_4'' \\ \pmb{u}_5 \pmb{u}_5' \pmb{u}_5'' \\ \pmb{u}_6 \pmb{u}_6' \pmb{u}_6'' \\ \pmb{u}_7 \pmb{u}_7' \pmb{u}_7'' \\ \pmb{u}_8 \pmb{u}_8' \pmb{u}_8'' \end{bmatrix} \begin{bmatrix} \pmb{E}_{11} \\ \pmb{E}_{12} \\ \pmb{E}_{13} \\ \pmb{E}_{21} \\ \pmb{E}_{22} \\ \pmb{E}_{23} \\ \pmb{E}_{31} \\ \pmb{E}_{32} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$

- Solve for \pmb{E}_{11} to \pmb{E}_{32}
These are elements of the Essential Matrix
- Then solve for \pmb{R}, \pmb{t}

$\pmb{E} = \left[\left(\pmb{t}_2 \right)_x \right] \pmb{R}$
Sketch of Two View SFM Algorithm

Input: Two images
1. Detect feature points in each image
2. Using intrinsic parameters from calibration, compute
 \[p_{ij} = K_j^{-1} q_{ij} \]
1. Find 8 matching feature points (easier said than done)
2. Compute the Essential Matrix \(E \) using 8-point Algorithm
3. Compute \(R \) and \(t \) (recall that \(E = [t_x]R \) where \([t_x] \) is a skew symmetric matrix). \(t \) can only be recovered up to a scale factor
4. Perform stereo matching using recovered epipolar geometry expressed via \(E \)
5. Reconstruct 3-D positions of corresponding points using \(R, T \) and \(p_{ij} \)

N-view structure from motion
Feature detection

Several images observe a scene from different viewpoints

Detect features using, for example, SIFT [Lowe, IJCV 2004]
Feature matching

Match features between each pair of images

Structure from motion

minimize $g(R, T, X)$

non-linear least squares
Bundle adjustment

- Minimize sum of squared reprojection errors:

\[g(X, R, T) = \sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| P(x_i, R_j, t_j) - \left[u_{i,j} \right] \right\|^2 \]

where \(q_{ij} = (u_{ij}, v_{ij}) \) are the image coordinates and \(P(x_i, R_j, t_j) \) is the projection of 3D point \(x_i \) for a camera located at \(t_j \) with orientation \(R_j \).

- Optimized with non-linear least squares
- Levenberg-Marquardt is a popular choice

- Practical challenges?
 - Initialization
 - Outliers

Inliers vs. Outliers

- As you saw in HW1, not every match was correct when using SIFT descriptors.
- Squared errors metrics like \(\sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} \cdot \left\| P(x_i, R_j, t_j) - \left[u_{i,j} v_{i,j} \right] \right\|^2 \) highly penalize mismatches because they get squared.
- Inliers: Given a model with some assumed distribution, inliers are data points that fit the model.
- Outliers are points that do not fit the model.
- Example: line fitting

Inliers:

Outliers:
Given \(n \) points \((x_i, y_i)\), estimate parameters of line
\[ax_i + by_i - d = 0 \]
subject to the constraint that
\[a^2 + b^2 = 1 \]
Note: \(ax_i + by_i - d \) is distance from \((x_i, y_i)\) to line.

Cost Function:
Sum of squared distances between each point and the line

Problem: minimize
\[E(a, b, d) = \sum_{i=1}^{n} (ax_i + by_i - d)^2 \]

with respect to \((a, b, d)\).

1. Minimize \(E \) with respect to \(d \):
\[\frac{\partial E}{\partial d} = 0 \Rightarrow d = \frac{1}{n} \sum_{i=1}^{n} ax_i + by_i = a\bar{x} + b\bar{y} \]
Where \((\bar{x}, \bar{y})\) is the mean of the data points
Line fitting cont.

2. Substitute d back into E

$$E = \sum_{i=1}^{n} [a(x_i - \bar{x}) + b(y_i - \bar{y})]^2 = \| \mathbf{u} \mathbf{n} \|^2$$

where $\mathbf{n} = (a \; b)^T$.

3. Minimize $E = |\mathbf{u} \mathbf{n}|^2 = \mathbf{u}^T \mathbf{S} \mathbf{u}$ with respect to a, b subject to the constraint $\mathbf{n}^T \mathbf{n} = 1$. Note that \mathbf{S} is given by

$$\mathbf{S} = \mathbf{u}^T \mathbf{u} = \begin{pmatrix} \sum_{i=1}^{n} x_i^2 - n \bar{x}^2 & \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \\ \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} & \sum_{i=1}^{n} y_i^2 - n \bar{y}^2 \end{pmatrix}$$

And it’s a real, symmetric, positive definite

Line Fitting – Finished

4. This is a constrained optimization problem in \mathbf{n}. Solve with Lagrange multiplier

$$L(\mathbf{n}) = \mathbf{n}^T \mathbf{S} \mathbf{n} - \lambda (\mathbf{n}^T \mathbf{n} - 1)$$

Take partial derivative (gradient) w.r.t. \mathbf{n} and set to 0.

$$\nabla L = 2 \mathbf{S} \mathbf{n} - 2 \lambda \mathbf{n} = 0$$

or

$$\mathbf{S} \mathbf{n} = \lambda \mathbf{n}$$

$\mathbf{n} = (a, b)$ is an Eigenvector of the symmetric matrix \mathbf{S} (the one corresponding to the smallest Eigenvalue).

5. d is computed from Step 1.
Motivation

• Estimating models in the presence of outliers
 – Lines
 – Transformations for mossaicing
 – Essential matrix
 – And other models

• Typically: keypoints in two images
Simpler Example

• Fitting a straight line (model has line parameters)

RANSAC Idea applied to line fitting

Problem: Given s points and threshold τ, determine best fit line in presence of outliers
Repeat N times
 – Select two points at random
 – Determine line equation from the two points
 – Count number of points that are within distance τ from the line. This is called the “support” of the line and it’s the number of inliers
 – Line with the greatest support wins
Why will this work?

Iter 1
of inliers: 2
of outliers: 5

Iter 2
of inliers: 6
of outliers: 1

Why will this work?
RANSAC More Generally

- What do we need to apply RANSAC
 1. A parameterized model
 2. A way to estimate the model parameters from s data points \(\{x_1, \ldots, x_s\} \)
 3. Given the parameters of the model, a way to estimate the distance from a data point \(x_i \) to the model

RANSAC More Generally

Objective
Robust fit of model to data set \(S \) which contains outliers

Algorithm
REPEAT
 (i) Randomly select a sample of \(s \) data points from \(S \)
 (ii) Instantiate the model from this sample.
 (iii) Determine the set of data points \(S_i \) which are within a distance threshold \(t \) of the model. The set \(S_i \) is the **consensus set** of samples and defines the inliers of \(S \).
 (iv) \(S_{\text{largest}} = S_i \) if \(S_i \) is larger than \(S_{\text{largest}} \)
UNTIL (The size of \(S_i \) is greater than some threshold \(T \)) OR (There have been \(N \) trials)
The model is re-estimated using all the points in \(S_{\text{largest}} \)
How many samples?
(What is N?)

Choose N (number of samples) so that, with probability p, at least one random sample is free from outliers. e.g. $p=0.99$

$\left(1 - (1 - e)^s\right)^N = 1 - p$

$N = \log(1 - p) / \log(1 - (1 - e)^s)$

e: proportion of outliers
s: Number of points needed for the model

<table>
<thead>
<tr>
<th>proportion of outliers e</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>

Acceptable consensus set?

- Typically, terminate when inlier ratio reaches expected ratio of inliers

$$T = (1 - e)N$$

- Where
 - N : Number of Samples
 - E : proportion of outliers
 - T : Size of consensus set when to stop
Using RANSAC to estimate the Essential Matrix

• What is the model?
 Essential Matrix (8 parameters)

• How many “points” are needed, and where do they come from?
 8 points in each image or 8 matched pairs (usually use this)

• What distance do we use to compute the consensus set?
 L^2 distance of points to epipolar line

• How often do outliers occur
 Usually not known.

Feature points extracted by a corner detector
Matched points by RANSAC

Putative matches of the feature points in both images are computed by using a correlation measure for points in one image with features in the other image. Only features within a small window are considered to limit computation time. Mutually best matches are retained. RANSAC is used to robustly determine F from these putative matches.

Epipolar Geometry from Matched Points