Stereo Wrap Up
and
Structure from Motion

Introduction to Computer Vision
CSE 152
Lecture 8

Announcements

• HW1 due tonight
Stereo Vision Outline

- Offline:
 - Calibrate cameras & determine epipolar geometry

- Online
 1. Acquire stereo images
 2. Rectify images to convenient epipolar geometry
 3. Establish correspondence
 4. **Estimate depth**

What if stereo geometry isn’t convenient?
Rectification: Given a pair of images, transform both images so that epipolar lines are image rows.
Under perspective projection, the mapping from a plane to a plane is given by a linear transformation of homogeneous coordinates (called a projective transformation or homography).

Question: Where are the epipoles in the rectified image?
What happens to image during rectification?

- Image mapped to a quadrilateral
- Image may get stretched.
 - Pronounced when epipole is near edge of image

Is rectification always possible?

How would these images look like if they’re rectified?
Two approaches to finding correspondence

1. Feature-Based (Sparse)
 - From each image, process “monocular” image to obtain image features (e.g., corners, lines).
 - Establish correspondence between features, using appearance info

2. Area-Based (Dense)
 - Directly compare image regions between the two images.

Random Dot Stereograms
Random Dot Stereograms

Finding Correspondences

$W(p_l)$

$W(p_r)$
Simple matching methods

- SSD (Sum of Squared Differences)
 \[\sum_{x,y} |W_1(x,y) - W_2(x,y)|^2 \]

- NCC (Normalized Cross Correlation)
 \[\frac{\sum_{x,y} (W_1(x,y) - \bar{W}_1)(W_2(x,y) - \bar{W}_2)}{\sigma_{W_1}\sigma_{W_2}} \]
 where \(\bar{W}_i = \frac{1}{n} \sum_{x,y} W_i \), \(\sigma_{W_i} = \sqrt{\frac{1}{n} \sum_{x,y} (W_i - \bar{W}_i)^2} \)

- What advantages might NCC have over SSD?

Some Issues

- Ambiguity
- Epipolar ordering
- Window size
- Window shape
- Lighting
- Half occluded regions
Some Issues

- Ambiguity
- **Epipolar ordering**
- Window size
- Window shape
- Lighting
- Half occluded regions
A challenge: Multiple Interpretations

Each feature on left epipolar line matches one and only one feature on right epipolar line.

Some Issues

- Ambiguity
- Epipolar ordering
- **Window size**
- Window shape
- Lighting
- Half occluded regions
Window size

\[\text{Better results with adaptive window} \]

Some Issues

- Ambiguity
- Epipolar ordering
- Window size
- **Window shape**
- Lighting
- Half occluded regions
Window Shape and Forshortening

- Even though the red window is centered at the image of same scene point, the line is pointing in a different direction.
- Occurs when angle between surface normal and optical axis is large. Window-based stereo matching may fail in this case.

Some Issues

- Ambiguity
- Epipolar ordering
- Window size
- Window shape
- **Lighting**
- Half occluded regions
Lighting Conditions (Photometric Variations)

Some Issues

- Ambiguity
- Epipolar ordering
- Window size
- Window shape
- Lighting
- Half occluded regions
Half occluded regions

Stereo matching as an optimization problem

Similarity measure (SSD or NCC)

Optimal path (dynamic programming)

Constraints
- epipolar
- ordering
- uniqueness
- disparity limit
- disparity gradient limit

Trade-off
- Matching cost (data)
- Discontinuities (prior)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen’97; Van Meerbergen, Vergauwen, Pollefeys, VanGool IJCV’02)
Variations on Binocular Stereo

1. Uncalibrated Stereo
2. Trinocular Stereopsis
3. Multiview stereo
4. Helmholtz Reciprocity Stereopsis

For the measured pixel coordinates q in Camera 1 with intrinsic parameters K_1, the relationship between the calibrated image plane location and pixel coordinate is

$$1p = (K_1^{-1}) q$$

Likewise, for Camera 2 with intrinsic parameters K_2, we have

$$2p' = (K_2^{-1}) q'$$
The Fundamental Matrix

The epipolar constraint is given by: \(\mathbf{1}^T \mathbf{E} \mathbf{2} \mathbf{p}' = 0 \) with \(\mathbf{E} = \begin{bmatrix} (\mathbf{t}_2)_x \\ 1 \end{bmatrix} \mathbf{R} \)

where \(\mathbf{1} \mathbf{p} \) and \(\mathbf{2} \mathbf{p}' \) are calibrated coordinates in the two images.

The relationship between the calibrated coordinates (\(\mathbf{1} \mathbf{p}, \mathbf{2} \mathbf{p}' \)) and uncalibrated coordinates (\(\mathbf{q}, \mathbf{q}' \)) can be expressed as \(\mathbf{1} \mathbf{p} = (\mathbf{K}_1^{-1}) \mathbf{q} \) and \(\mathbf{2} \mathbf{p}' = (\mathbf{K}_2^{-1}) \mathbf{q}' \)

Therefore, we can express the epipolar constraint as:

\[
\mathbf{1}^T \mathbf{E} \mathbf{2} \mathbf{p}' = 0 = (\mathbf{K}_1^{-1} \mathbf{q})^T \mathbf{E} (\mathbf{K}_2^{-1} \mathbf{q}') = \mathbf{q}^T ((\mathbf{K}_1^{-1})^T \mathbf{E} \mathbf{K}_2^{-1}) \mathbf{q}' = \mathbf{q}^T \mathbf{F} \mathbf{q}' = 0
\]

where \(\mathbf{F} = (\mathbf{K}_1^{-1})^T \mathbf{E} \mathbf{K}_2^{-1} \) is a 3x3 matrix called the Fundamental Matrix.

This can be solved using 8 point algorithm WITHOUT CALIBRATION.

Epipolar Constraint for Calibrated and Uncalibrated Cameras

- **Calibrated Cameras:** \(\mathbf{1}^T \mathbf{E} \mathbf{2} \mathbf{p}' = 0 \)
 - \(\mathbf{E} \) is the essential matrix
 - \(\mathbf{1} \mathbf{p} = (\mathbf{K}_1^{-1}) \mathbf{q} \), \(\mathbf{2} \mathbf{p}' = (\mathbf{K}_2^{-1}) \mathbf{q}' \)
 - where \(\mathbf{K}_1, \mathbf{K}_2 \) are the intrinsic parameters of the two cameras and are determined by calibration.

- **Uncalibrated Cameras:** \(\mathbf{q}^T \mathbf{F} \mathbf{q}' = 0 \)
 - \(\mathbf{F} \) is the Fundamental matrix
 - \(\mathbf{q} \) and \(\mathbf{q}' \) are pixel coordinates

- Note similarity of equations.

- The fundamental matrix can be estimated directly from pixel coordinates using the 8 point algorithm.
Epipolar constraint for Uncalibrated Cameras

\[q^T F q' = 0 \]

1. The epipolar constraint is homogenous in \(q, q' \) and \(F \)
2. It is bilinear in \(q \) and \(q' \). E.g., for a given value of \(q \), it is linear in \(q' \) and vice versa
3. Given pixel coordinates \(q' \) in \(\Pi' \), the equation of the epipolar line \(l \) in \(\Pi \) is \(a^T q = 0 \) where \(a = Fq' \)
4. Given pixel coordinates \(q \) in \(\Pi \), the equation of the epipolar line \(l' \) in \(\Pi' \) is \(b^T q' = 0 \) where \(b = F^T q \)

The Essential Matrix and Epipoles

\[q^T F q' = 0 \]

5. The eigenvector of \(F \) corresponding to the zero eigenvalue is the epipole \(e' \)
6. The eigenvector of \(F^T \) corresponding to the zero eigenvalue is the epipole \(e \)
7. \(F \) is singular (determinant is zero & can’t be inverted)
8. \(F \) can be estimated from 8 corresponding points using the 8 point algorithm
Uncalibrated stereo

- Epipolar geometry can be determined without calibration.
- Images can be rectified so epipolar lines are rows of the rectified image.
- Matching can proceed in the same way.
- But you need calibration to estimate depth. However, if you arbitrarily make up intrinsic and extrinsic parameters and estimate depth. The estimated 3D point locations \(\hat{p} \) and true locations \(\hat{p} \) in homogeneous coordinates will differ by a linear transformation \(\hat{p} = A p \).

Trinocular Epipolar Constraints

These constraints are not independent!

\[
\begin{align*}
 p_1^T E_{12} p_2 &= 0 \\
 p_2^T E_{23} p_3 &= 0 \\
 p_3^T E_{31} p_1 &= 0
\end{align*}
\]
Ambiguity in binocular stereo

• Trinocular stereo can remove the binocular ambiguity.
• For each potential binocular match, the third image can be used to the match.
• There’s no need to search in the third image.
Structure from Motion

Also called

Visual SLAM

(Simultaneous Localization and Mapping)

Estimate 3D structure from images
Structure-from-Motion (SFM)

Given two or more images or video w/o any information on camera position/motion as input, estimate camera motion and 3-D structure of a scene.

Two Approaches

1. **Discrete motion (wide baseline)**
2. Continuous (Infinitesimal) motion usually from video
For N points measured in M images, estimate $(R_1,t_1),\ldots,(R_M,t_M)$ and X_1,\ldots,X_N.

It's only possible to estimate t_1,\ldots,t_M and X_1,\ldots,X_N up to a scale factor. Why?
How many views and how many points are needed to solve this?

Consider M images of N points, how many unknowns
1. Affix world coordinate system to location of first camera frame: $(M-1)\times 6$ unknowns for cameras
2. 3-D Structure: $3\times N$ unknowns for points
3. Can only recover structure and motion up to scale factor (one fewer unknown)

Total number of unknowns: $(M-1)\times 6 + 3\times N - 1$
Total number of measurements: $2\times M\times N$

Solution is possible when more measurements than unknowns: $(M-1)\times 6 + 3\times N - 1 \leq 2\times M\times N$

Some values of N and M satisfying this:
$M = 2, \ N = 5$
$M = 3, \ N = 4$