Part III - Standard Combinational Modules

• Introduction
• Decoder
 – Behavior, Logic, Usage
• Encoder
• Multiplexer (Mux)
 – Behavior, Logic, Usage
• Demultiplexer (DeMux)
Part III - Standard Combinational Modules

Signal Transport
- Decoder: Decode address
- Encoder: Encode address
- Multiplexer (Mux): Select data by address
- Demultiplexer (DeMux): Direct data by address
- Shifter: Shift bit location

Data Operator
- Adder: Add two binary numbers
- Multiplier: Multiply two binary numbers
Interconnect: Decoder, Encoder, Mux, DeMux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
1. Decoder

• Definition
• Logic Diagram
• Application (Universal Set)
• Tree of Decoders
iClicker: Decoder Definition

A. A device that decodes
B. An electronic device that converts signals from one form to another
C. A machine that converts a coded text into ordinary language
D. A device or program that translates encoded data into its original format
E. All of the above
Decoder Definition: A digital module that converts a binary address to the assertion of the addressed device.

n inputs: n=3

2^n outputs: 2^3 = 8

n to 2^n decoder function:

\[y_i = 1 \text{ if } E = 1 \land (I_2, I_1, I_0) = i \]

\[y_i = 0 \text{ otherwise} \]
1. Decoder: Definition

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at most

![Decoder Diagram]

<table>
<thead>
<tr>
<th>A_1</th>
<th>A_0</th>
<th>Y_3</th>
<th>Y_2</th>
<th>Y_1</th>
<th>Y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$E = 1$
1. Decoder: Definition

iClicker: A 3-input decoder has how many outputs?
A. 2 outputs
B. 4 outputs
C. 8 outputs
D. 10 outputs
iClicker: For a 3-input decoder, suppose
\((E,I_2,I_1,I_0) = (1,0,0,0)\),
then \((y_7,y_6, \ldots, y_0)\) is equal to:
A. \((00000000)\)
B. \((00000001)\)
C. \((00000010)\)
D. \((01000000)\)
E. \((10000000)\)
Decoder: Logic Diagram (Inside a decoder)

\[y_0 = 1 \text{ if } (A_1, A_0) = (0,0) \& E = 1 \]

\[y_i = m_i E \]

\[
\begin{array}{c|c|c|c|c|c|c}
 & & & & & & \\
 A_1 & A_0 & Y_3 & Y_2 & Y_1 & Y_0 \\
\hline
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[y_3 = A_1 A_0 E \]
PI Q: What is the output $Y_{3:0}$ of the 2:4 decoder for $(A_1, A_0) = (1,0)$?

A. $\langle 1, 1, 0, 0 \rangle$
B. $\langle 1, 0, 1, 1 \rangle$
C. $\langle 0, 0, 1, 0 \rangle$
D. $\langle 0, 1, 0, 0 \rangle$
Decoder Application: universal set \{ \text{Decoder, OR} \}

Example:
Implement the following functions with a 3-input decoder and OR gates.

i) \(f_1(a,b,c) = \Sigma m(1,2,4) \)

ii) \(f_2(a,b,c) = \Sigma m(2,3), \)

iii) \(f_3(a,b,c) = \Sigma m(0,5,6) \)
Decoder Application: universal set \{\text{Decoder, OR}\}

Decoder produces minterms when \(E=1\). We can use an OR gate to collect the minterms to cover the \text{On-set}.
For the \text{Don’t Care-Set}, we can just ignore the terms.
Decoder Application: universal set \{\text{Decoder, OR}\}

Example: Implement functions
i) \(f_1(a,b,c) = \Sigma m(1,2,4) + \Sigma d(0,5), \)
ii) \(f_2(a,b,c) = \Sigma m(2,3) + \Sigma d(1,4), \)
iii) \(f_3(a,b,c) = \Sigma m(0,5,6) \)

with a 3-input decoder and OR gates.
Decoders

• OR minterms

\[Y = AB + \overline{AB} = A \oplus B \]
Tree of Decoders: Scale up the size of the decoders using a tree structure

Implement a $4-2^4$ decoder with $3-2^3$ decoders.
Tree of Decoders

Implement a 6-2^6 decoder with 3-2^3 decoders.
PI Q: A four variable switching function $f(a,b,c,d)$ can be implemented using which of the following?

A. 1:2 decoders and OR gates
B. 2:4 decoders and OR gates
C. 3:8 decoders and OR gates
D. All of the above
E. None of the above
2. Encoder

• Definition
• Logic Diagram
• Priority Encoder
iClicker: Definition of Encoder

A. Any program, circuit or algorithm which encodes

B. In digital audio technology, an encoder is a program that converts an audio WAV file into an MP3 file

C. A device that convert a message from plain text into code

D. A circuit that is used to convert between digital video and analog video

E. All of the above
Encoder Definition: A digital module that converts the assertion of a device to the binary address of the device.

Encoder Description:

- At most one $I_i = 1$.
- $(y_{n-1}, ..., y_0) = i$ if $I_i = 1$ & $E = 1$
- $(y_{n-1}, ..., y_0) = 0$ otherwise.
- $A = 1$ if $E = 1$ and one i s.t. $I_i = 1$
- $A = 0$ otherwise.
Encoder: Logic Diagram

\[I_1, I_3, I_5, I_7 \rightarrow y_0 \]

\[I_2, I_3, I_6, I_7 \rightarrow y_1 \]

\[I_4, I_5, I_6, I_7 \rightarrow y_2 \]

\[I_0, I_1, I_6, I_7 \rightarrow A \]
Priority Encoder:

E

I₀

0

1

2

3

y₀

y₁

I₃

E₀

Gs
Priority Encoder: Definition

Description: Input \((I_{2^{n-1}}, \ldots, I_0)\), Output \((y_{n-1}, \ldots, y_0)\)

\((y_{n-1}, \ldots, y_0) = i\) if \(I_i = 1 \& E = 1 \& I_k = 0\)

for all \(k > i\) (high bit priority) or

for all \(k < i\) (low bit priority).

\(E_o = 1\) if \(E = 1 \& I_i = 0\) for all \(i\),

\(G_s = 1\) if \(E = 1 \& \exists i\) s.t. \(I_i = 1\).

\((G_s\) is like \(A\), and \(E_o\) passes on enable).
Priority Encoder: Implement a 32-input priority encoder with 8 input priority encoders (high bit priority).