Lecture 10: Addressing

CSE 123: Computer Networks
Aaron Schulman
Lecture 10 Overview

• Finish fragmentation
 • MTU and IP ID
 • Path MTU discovery

• IP Addresses
 • Class-based addressing

• Subnetting
 ◆ Classless addressing
Fragmentation

- Different networks may have different maximum frame sizes
 - Maximum Transmission Unit (MTUs)
 - Ethernet 1.5K, FDDI 4.5K
- Router breaks up single IP packet into two or more smaller IP packets
 - Each **fragment** is labeled so it can be correctly **reassembled**
 - *End host* reassembles them into original packet
IP ID and Bitflags

- Source inserts unique value in identification field
 - Also known as the IPID
 - If packet is fragmented, the router copies this value into any fragments
- Offset field indicates position of current fragment (in bytes/8)
 - Zero for non-fragmented packet
- Bitflags provide additional information
 - More Fragments bit helps identify last fragment
 - Don’t Fragment bit prohibits (further) fragmentation
 - Note recursive fragmentation easily supported—just requires care with More Fragments bit
Fragmentation Example

One large datagram becomes several smaller datagrams

(Offset actually encoded as bytes/8)

<table>
<thead>
<tr>
<th>length</th>
<th>ID</th>
<th>MF</th>
<th>offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000</td>
<td>x</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1500</td>
<td>x</td>
<td>1</td>
<td>1480</td>
</tr>
<tr>
<td>1040</td>
<td>x</td>
<td>0</td>
<td>2960</td>
</tr>
</tbody>
</table>

CSE 123 – Lecture 9: Internetworking
Costs of Fragmentation

- Interplay between fragmentation and retransmission
 - A single lost fragment may trigger retransmission
 - Any retransmission will be of entire packet (why?)

- Packet must be completely reassembled before it can be consumed on the receiving host
 - Takes up buffer space in the mean time
 - When can it be garbage collected?

- Why not reassemble at each router?
Path MTU Discovery

- Path MTU is the smallest MTU along path
 - Packets less than this size don’t get fragmented

- Fragmentation is a burden for routers
 - We already avoid reassembling at routers
 - Avoid fragmentation too by having hosts learn path MTUs

- Hosts send packets, routers return error if too large
 - Hosts can set “don’t fragment” flag
 - Hosts discover limits, can size packets at source
 » ICMP protocol: special IP packet format for sending error msgs
 - Reassembly at destination as before
Aside: ICMP

- What happens when things go wrong?
 - Need a way to test/debug a large, widely distributed system

- ICMP = Internet Control Message Protocol (RFC792)
 - Companion to IP – required functionality

- Used for error and information reporting:
 - Errors that occur during IP forwarding
 - Queries about the status of the network
ICMP Error Message Generation

Error during forwarding!

source

IP packet

dest

ICMP

IP packet
Common ICMP Messages

- **Destination unreachable**
 - “Destination” can be host, network, port, or protocol
- **Redirect**
 - To shortcut circuitous routing
- **TTL Expired**
 - Used by the “traceroute” program
 - traceroute traces packet routes through Internet
- **Echo request/reply**
 - Used by the “ping” program
 - ping just tests for host liveness
- **ICMP messages include portion of IP packet that triggered the error (if applicable) in their payload**
ICMP Restrictions

- The generation of error messages is limited to avoid cascades … error causes error that causes error…

- Don’t generate ICMP error in response to:
 - An ICMP error
 - Broadcast/multicast messages (link or IP level)
 - IP header that is corrupt or has bogus source address
 - Fragments, except the first

- ICMP messages are often rate-limited too
 - Don’t waste valuable bandwidth sending tons of ICMP messages
Addressing Considerations

- Fixed length or variable length addresses?

- Issues:
 - Flexibility
 - Processing costs
 - Header size

- Engineering choice: IP uses fixed length addresses
IP Addresses

- 32-bits in an IPv4 address
 - Dotted decimal format a.b.c.d
 - Each represent 8 bits of address

- Hierarchical: Network part and host part
 - E.g. IP address 128.54.70.238
 - 128.54 refers to the UCSD campus network
 - 70.238 refers to the host ieng6.ucsd.edu

- Which part is network vs. host?
Class-based Addressing

- Most significant bits determines “class” of address
 - Class A: 0 Network Host
 - 127 nets, 16M hosts
 - Class B: 1 0 Network Host
 - 16K nets, 64K hosts
 - Class C: 1 1 0 Network Host
 - 2M nets, 254 hosts

- Special addresses
 - Class D (1110) for multicast, Class E (1111) experimental
 - 127.0.0.1: local host (a.k.a. the loopback address)
 - Host bits all set to 0: network address
 - Host bits all set to 1: broadcast address

CSE 123 – Lecture 10: Addressing
IP Forwarding Tables

- Router needs to know where to forward a packet
- Forwarding table contains:
 - List of network names and next hop routers
 - Local networks have entries specifying which interface
 » Link-local hosts can be delivered with Layer-2 forwarding
- E.g. cseweb.ucsd.edu address is 132.239.8.30
 - Class B address – class + network is 132.239
 - Lookup 132.239 in forwarding table
 - Prefix – part of address that really matters for routing
Subnetting

- Individual networks may be composed of several LANs
 - Only want traffic destined to local hosts on physical network
 - Routers need a way to know which hosts on which LAN

- Networks can be arbitrarily decomposed into subnets
 - Each subnet is simply a prefix of the host address portion
 - Subnet prefix can be of any length, specified with netmask
Subnet Addresses

- Every (sub)network has an address and a **netmask**
 - Netmask tells which bits of the network address is important
 - Convention suggests it be a proper prefix

- Netmask written as an all-ones IP address
 - E.g., Class B netmask is 255.255.0.0
 - Sometimes expressed in terms of number of 1s, e.g., /16

- Need to size subnet appropriately for each LAN
 - Only have remaining bits to specify host addresses
IP Address Problem (1991)

- Address space depletion
 - In danger of running out of classes A and B

- Why?
 - Class C too small for most organizations (only ~250 addresses)
 - Very few class A – very careful about giving them out (who has 16M hosts anyway?)
 - Class B – greatest problem
Classless Inter-Domain Routing (1993)

- Networks described by variable-length prefix and length
- Allows arbitrary allocation between network and host address

E.g. 10.95.1.2 contained within 10.0.0.0/8:
 - 10.0.0.0 is network and remainder (95.1.2) is host

- Pro: Finer grained allocation; aggregation
- Con: More expensive lookup: longest prefix match

CIDR

Network Host

Prefix

Mask = # significant bits representing prefix

e.g. 10.95.1.2 contained within 10.0.0.0/8:
 - 10.0.0.0 is network and remainder (95.1.2) is host
For Next Time

- Read 4.1.3
- Homework 2 out tonight by 10pm
- Finish up Project 1 only around 1 week left!