Problem 1 (4 points) The language $\forall^* \exists^* \text{CALC}$ consists of all CALC sentences of the form

$$\forall y_1 \ldots \forall y_n \exists z_1 \ldots \exists z_m \varphi(y_1, \ldots, y_n, z_1 \ldots z_m)$$

where φ is a quantifier-free CALC formula. Prove that satisfiability of sentences in $\forall^* \exists^* \text{CALC}$ is undecidable.

Problem 1 (4 points) Let A_r be the directed graph consisting of one simple path of length r (the length of a path is taken to be the number of edges along the path). Does Duplicator have a winning strategy for the Ehrenfeucht-Fraissé game of length 4 on A_7 and A_8?

Problem 2 (6 points) Determine whether the following properties of graphs are almost surely true or whether they are almost surely false.

(a) Existence of a cycle of length three.

(b) Connectivity.

(c) Being a tree.

Hint: Try to avoid brute-force counting; use what you already know.

Problem 4 (6 points) We say that a graph property is definable by a Datalog program P with some designated IDB relation answer and one binary EDB relation G iff for every G, answer is non-empty in $P(G)$ iff the property holds for G. Show the following:

(i) (3 points) The existence of a path of even length between two designated nodes a and b in a graph is definable in Datalog.

(ii) (3 points) The existence of a simple path of even length between two designated nodes a and b in a graph is not definable in Datalog.