CSE 233

Database System Overview
Data Management

An evolving, expanding field:

- Classical stand-alone databases (Oracle, DB2, SQL Server)
- Computer science is becoming data-centric:
 - web knowledge harvesting, crowd sourcing, cloud computing, scientific databases, networks, data mining, streaming sensor monitoring, social networks, bioinformatics, geographic information systems, digital libraries, data-driven business processes

- Classical database concepts and algorithms continue to provide the core technology
What is a database?

- Persistent data
- Query and update language for accessing and modifying data
- Query optimization
- Transactions and concurrency control

What kind of data?

Emphasis: many instances of similarly structured data

Examples:

- Airline reservations: database (large set of similar records)
- Computerized library: information retrieval
- Medication advisor: expert system
Top Level Goals of a Database System

• Provide users with a meaning-based view of data
 – shield from irrelevant detail → abstract view

• Support operations on data
 – queries, updates

• Provide data control
 – integrity, protection
 – concurrency, recovery
Database System

• Tailored to specific application

Database Management System

• Generalized DB system
 – used in variety of application environments
 – common approach to
 • data organization
 • data storage
 • data access
 • data control
 – e.g. Ingres/Postgres, DB2, Oracle, SQL Server, MySQL, etc.
Levels of Abstraction

- **Logical level:** describes data stored in database in terms close to the application

  ```
  type customer = record
      customer_id : string;
      customer_name : string;
      customer_street : string;
      customer_city : integer;
  end;
  ```

- **Physical level:** describes how the data is stored.

- **View level:** customized, restructured information. Views can also hide information (such as an employee’s salary) for security purposes.
Basic Architecture of a Database System

Data Independence – logical and physical levels are independent
Data Models

- A collection of concepts and tools for describing the data relationships, semantics, constraints…
 +
- A language for querying and modifying the data

- Relational model
- Entity-Relationship data model (mainly for database design, no query language)
- Object-based data models (Object-oriented and Object-relational)
- Semi-structured data model (XML)
- Other older models:
 - Network model
 - Hierarchical model
Schemas and Instances

Similar to types and values of variables in programming languages

- **Schema** – the logical structure of the database
 - Example: The database consists of information about a set of customers and accounts and the relationship between them)
 - Analogous to type of a variable in a program

- **Instance** – the actual content of the database at a particular point in time
 - Analogous to the value of a variable
Example: Entity-Relationship Model

- Models an application as a collection of entities and relationships
 - Entity: a “thing” or “object” in the enterprise that is distinguishable from other objects
 - Described by a set of attributes
 - Relationship: an association among several entities
- Represented diagrammatically by an entity-relationship diagram:
Example: Relational Model

(a) The customer table

(b) The account table

(c) The depositor table

Schema
Example: Relational Model

<table>
<thead>
<tr>
<th>customer_id</th>
<th>customer_name</th>
<th>customer_street</th>
<th>customer_city</th>
</tr>
</thead>
<tbody>
<tr>
<td>192-83-7465</td>
<td>Johnson</td>
<td>12 Alma St.</td>
<td>Palo Alto</td>
</tr>
<tr>
<td>677-89-9011</td>
<td>Hayes</td>
<td>3 Main St.</td>
<td>Harrison</td>
</tr>
<tr>
<td>182-73-6091</td>
<td>Turner</td>
<td>123 Putnam Ave.</td>
<td>Stamford</td>
</tr>
<tr>
<td>321-12-3123</td>
<td>Jones</td>
<td>100 Main St.</td>
<td>Harrison</td>
</tr>
<tr>
<td>336-66-9999</td>
<td>Lindsay</td>
<td>175 Park Ave.</td>
<td>Pittsfield</td>
</tr>
<tr>
<td>019-28-3746</td>
<td>Smith</td>
<td>72 North St.</td>
<td>Rye</td>
</tr>
</tbody>
</table>

(a) The `customer` table

<table>
<thead>
<tr>
<th>account_number</th>
<th>balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-101</td>
<td>500</td>
</tr>
<tr>
<td>A-215</td>
<td>700</td>
</tr>
<tr>
<td>A-102</td>
<td>400</td>
</tr>
<tr>
<td>A-305</td>
<td>350</td>
</tr>
<tr>
<td>A-201</td>
<td>900</td>
</tr>
<tr>
<td>A-217</td>
<td>750</td>
</tr>
<tr>
<td>A-222</td>
<td>700</td>
</tr>
</tbody>
</table>

(b) The `account` table

<table>
<thead>
<tr>
<th>customer_id</th>
<th>account_number</th>
</tr>
</thead>
<tbody>
<tr>
<td>192-83-7465</td>
<td>A-101</td>
</tr>
<tr>
<td>192-83-7465</td>
<td>A-201</td>
</tr>
<tr>
<td>019-28-3746</td>
<td>A-215</td>
</tr>
<tr>
<td>677-89-9011</td>
<td>A-102</td>
</tr>
<tr>
<td>182-73-6091</td>
<td>A-305</td>
</tr>
<tr>
<td>321-12-3123</td>
<td>A-217</td>
</tr>
<tr>
<td>336-66-9999</td>
<td>A-222</td>
</tr>
<tr>
<td>019-28-3746</td>
<td>A-201</td>
</tr>
</tbody>
</table>

(c) The `depositor` table
Data Definition Language (DDL)

• Specification language for defining the database schema

 Example: create table account (
 account-number char(10),
 balance integer)

• DDL compiler generates a set of tables stored in a data dictionary

• Data dictionary contains metadata (i.e., data about data)
 – Database schema
 – Integrity constraints
 • Domain constraints
 • Referential integrity (references constraint in SQL)
 • Assertions
 – Authorization information
Data Manipulation Language (DML)

• Language for accessing and modifying data
 DML also known as query/update language

• Two classes of languages
 – Procedural – user specifies what data is required and how to get that data
 – Declarative (nonprocedural) – user specifies what data is required without specifying how to get it

• SQL is the most widely used query language
 primarily declarative
Database Architecture

Different architectures for different settings:

• Centralized
• Parallel (multi-processor) cloud computing/map-reduce
• Client-server
• Distributed
Centralized DBMS

Site 1

Site 2

Site 3

Site 4

Site 5
Client/Server DBMS

Client

SQL requests

Answers

Server
Map-reduce
Core database issues

• Data models, query languages
• Database design
• Query processing
• Storage management
• Transaction management
• Concurrency control
Beyond the Core

- Deductive databases
- Temporal databases
- Multimedia databases
- Geographic information systems
- Data warehouses
- Real-time and active databases
- XML databases
- Database-driven Web applications/services
- Data analytics (aka Big Data)
Databases at UCSD

• Prof. Alin Deutsch
• Prof. Arun Kumar
• Prof. Yannis Papakonstantinou
• Prof. Victor Vianu

Database group Web site: http://db.ucsd.edu/
 papers, seminars, bragging….

• Intersections with other CSE groups
 – storage
 – multimedia
 – machine learning
 – IR/ data mining
 – networks
Database Theory

CSE 233
Relational db: theory \longrightarrow practice

Frege: FO logic

Tarski: algebra for FO

Codd: relational databases
Databases: implemented logic!

• FO lies at the core of modern database systems
 “Databases = FO on every desk!”

• Relational query languages are based on FO:
 SQL, QBE

• More powerful query languages (all the way to XML) are based on extensions of FO
Why is FO so successful as a query language?

• easy to use syntactic variants
 SQL, QBE

• efficient implementation via relational algebra
 amenable to analysis and simplification

• potential for perfect scaling to large databases
 very fast response can be achieved
 using parallel processing
Journey of a Query

<table>
<thead>
<tr>
<th>SQL ~ FO</th>
<th>select ... from ... where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational Algebra</td>
<td>$\pi_{13}(P\ll Q) \ll ...$</td>
</tr>
<tr>
<td>Query Rewriting</td>
<td>$\pi_{14}(P\ll S) \ll Q \ll R$</td>
</tr>
<tr>
<td>Query Execution Plan</td>
<td></td>
</tr>
<tr>
<td>Execution</td>
<td></td>
</tr>
<tr>
<td>Physical Level</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:
```
  P       S
    ▼      ▼
   Q       R
       ▼  ▼
    QR    PR
```

Journey of a Query

SQL ~ FO

select … from … where

Relational Algebra

\[\pi_{13}(P<Q) \bowtie \ldots \]

Query Rewriting

\[\pi_{14}(P<S) \bowtie Q \bowtie R \]

Query Execution Plan

Physical Level

Execution

\[\pi_{14} \]

\[Q \bowtie R \]

\[P \bowtie S \]
Most spectacular: theoretical potential for perfect scaling!

- **perfect scaling**: given sufficient resources, performance does not degrade as the database becomes larger
- **key**: parallel processing
- **cost**: number of processors polynomial in the size of the database \((\text{FO} \subseteq \text{AC}0)\)
- **role of algebra**: operations highlight parallelism
Outline

• FO (aka CALC), relational algebra
• Static analysis for query processing
• Dependency theory
• Extending FO with recursion: Datalog and fixpoint logics
• Expressiveness and complexity
 Ehrenfeucht-Fraisse games, 0/1 laws
 The quest for a language for PTIME
• Highly expressive languages
Other topics (if time)

• Incomplete information
• Complex objects
• Selected research topics