Summary

Last time:

- Logical connectives: “not”, “and”, “or”, “implies”
- Using Truth Tables to define logical connectives

Today:

- Logical equivalences, tautologies
- Some applications
- Proofs in propositional logic
- Reading: Chap. 1.1, 1.2, 1.3, 1.6
“I will get an A in CSE20, **unless** I get sick”

A = “I will get an A in CSE20”; B = “I get sick”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>A unless B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>???</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>???</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>???</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>???</td>
</tr>
</tbody>
</table>

“A unless B” has the same meaning as

(A) $A \land B$; (B) $A \rightarrow B$; (C) $\neg(\neg A \land \neg B)$;

(D) $A \lor B$; (E) None of the above

“\(A\) unless \(B\)” has the same meaning as

- \((A)\) \(A \land B\); \((B)\) \(A \rightarrow B\); \((C)\) \(\neg (\neg A \land \neg B)\);
- \((D)\) \(A \lor B\); \((E)\) None of the above

- \(\neg (\neg A \land \neg B)\): false if don’t get sick, and still don’t get an A
- \(A \lor B\): either I get an A or I get sick (or both)
Conditional statements in English

Many equivalent ways to express the implication $p \rightarrow q$ in English:

“If I become Chancellor, I will lower tuition and fees.”

- if p then q
- q if p
- q when p
- p is a **sufficient condition** for q
- q is a **necessary condition** for p
- q unless $\neg p$
- p implies q
- p only if q
- q follows from p
Many equivalent ways to express the implication $p \rightarrow q$ in English:

“If I become Chancellor, I will lower tuition and fees.”

- if p then q
- q if p
- q when p
- p is a sufficient condition for q
- q is a necessary condition for p
- q unless $\neg p$
- p implies q
- p only if q
- q follows from p

Double implication $(p \leftrightarrow q) \equiv (p \rightarrow q) \land (q \rightarrow p)$

- p if and only if q
- p is necessary and sufficient for q
Claim: \(\neg A \land \neg B \equiv \neg (A \lor B) \)

Proof: We evaluate \(\neg A \land \neg B \) and \(\neg (A \lor B) \) by computing the truth value of each subexpression.
Claim: \(\neg A \land \neg B \equiv \neg (A \lor B) \)

Proof: We evaluate \(\neg A \land \neg B \) and \(\neg (A \lor B) \) by computing the truth value of each subexpression.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>\neg A</td>
<td>\neg B</td>
<td>\neg A \land \neg B</td>
<td>A \lor B</td>
<td>\neg (A \lor B)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
<td>--------</td>
<td>----------------</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The columns for \(\neg A \land \neg B \) and \(\neg (A \lor B) \) are identical.

\(\neg (A \lor B) \) and \(\neg A \land \neg B \) are logically equivalent.

“The negation of a disjunction is the conjunction of the negations”
Logical identities

- De Morgan (and): $\neg(A \lor B) \equiv \neg A \land \neg B$
- De Morgan (or): $\neg(A \land B) \equiv \neg A \lor \neg B$
- Double negation: $\neg(\neg A) \equiv A$
- Commutativity (and): $A \land B \equiv B \land A$
- Commutativity (or): $A \lor B \equiv B \lor A$
- Associativity (and): $A \land (B \land C) \equiv (A \land B) \land C$
- Associativity (or): $A \lor (B \lor C) \equiv (A \lor B) \lor C$
- Distributivity
- ...

All very useful to simplify logical expressions:

$\neg(\neg A \land \neg B) \equiv \neg\neg A \lor \neg\neg B \equiv A \lor B$
What does $\neg p \lor q$ mean?

- (A) $(\neg p) \lor q$
- (B) $\neg(p \lor q)$
- (C) Both, they are logically equivalent
- (D) It depends on the choice of p and q.

The standard answer is (A), but the choice is purely conventional.

Similarly, you may ask if $p \rightarrow q \rightarrow r$ means $p \rightarrow (q \rightarrow r)$ or $(p \rightarrow q) \rightarrow r$. (“right” or “left” associativity.)
What does $\neg p \vee q$ mean?

- (A) $(\neg p) \vee q$
- (B) $\neg(p \vee q)$
- (C) Both, they are logically equivalent
- (D) It depends on the choice of p and q.

The standard answer is (A), but the choice is purely conventional.

Similarly, you may ask if $p \rightarrow q \rightarrow r$ means $p \rightarrow (q \rightarrow r)$ or $(p \rightarrow q) \rightarrow r$. (“right” or “left” associativity.)
From highest to lower precedence:

- ¬
- ∧
- ∨
- →
- ↔

So, \(p \land q \rightarrow p \lor \neg q \land p \) means So, \((p \land q) \rightarrow (p \lor ((\neg q) \land p))\).

Similar to usual arithmetic precedence rules:

- \(5 \cdot 6^2 + 4 \) means \((5 \cdot (6^2)) + 4\).

\(p \rightarrow q \) and \(x^y \) are usually considered right associative:

\(p \rightarrow q \rightarrow r \equiv p \rightarrow (q \rightarrow r) \), \(3^{4^5} \equiv 3^{(4^5)} \).
Conditional “if X then Y else Z”

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>if X then Y else Z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>???</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>???</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>???</td>
</tr>
</tbody>
</table>

Question: How many rows in the truth table?

(A) 4 (B) 6 (C) 8 (D) 9 (E) None of the above
Truth table for “if X then Y else Z”

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth table for “if X then Y else Z”

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Answer: (C)
Can you express “if X then Y else Z” in terms of the other connectives?

- **(A)** \((X \rightarrow Y) \land (\neg X \rightarrow Z)\)
- **(B)** \((X \land Y) \lor (\neg X \land Z)\)
- **(C)** These are both valid answers
- **(D)** None of the above
Can you express “if X then Y else Z” in terms of the other connectives?

- **(A)** $(X \rightarrow Y) \land (\neg X \rightarrow Z)$
- **(B)** $(X \land Y) \lor (\neg X \land Z)$
- **(C)** These are both valid answers
- **(D)** None of the above

I think the correct answer is (B).

How can we check?
Can you express “if X then Y else Z” in terms of the other connectives?

- (A) $(X \rightarrow Y) \land (\neg X \rightarrow Z)$
- (B) $(X \land Y) \lor (\neg X \land Z)$
- (C) These are both valid answers
- (D) None of the above

I think the correct answer is (B).

How can we check?

Let’s draw a truth table
A logical statement is a tautology if it is always true.

Example: Law of excluded middle ("tertium non datur", there is no third possibility)

\(A \lor \neg A \)

Prove using the truth table method:

<table>
<thead>
<tr>
<th></th>
<th>(\neg A)</th>
<th>(A \lor \neg A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Last column is always true.
Another tautology

“Modus ponens”

\[((A \rightarrow B) \land A) \rightarrow B \]

- If \(A \) implies \(B \)
- and \(A \) is true
- then \(B \) is also necessarily true

Let’s check it by drawing a truth table.
Transitivity of implication.

\(((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C)\)

If A implies B and B implies C, then A implies C.

Question: How many rows in the truth table?

(A) 6; (B) 4; (C) 8; (D) 16
Transitivity of implication.

\[((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C) \]

If \(A \) implies \(B \) and \(B \) implies \(C \), then \(A \) implies \(C \).

Question: How many rows in the truth table?

(A) 6; (B) 4; (C) 8; (D) 16

Answer: (C) \(2^3 = 8 \). There are 3 propositional variables \((A, B, C)\), and each can take two possible values.
Transitivity of implication.

\[((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C) \]

If \(A \) implies \(B \) and \(B \) implies \(C \), then \(A \) implies \(C \).

Question: How many rows in the truth table?

(A) 6; (B) 4; (C) 8; (D) 16

Answer: (C) \(2^3 = 8 \). There are 3 propositional variables \((A, B, C)\), and each can take two possible values.

Question: How many columns?

(A) 4; (B) 7; (C) 8; (D) 11
One more tautology

Transitivity of implication.

\[((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C) \]

If \(A \) implies \(B \) and \(B \) implies \(C \), then \(A \) implies \(C \).

Question: How many rows in the truth table?

(A) 6; (B) 4; (C) 8; (D) 16

Answer: (C) \(2^3 = 8 \). There are 3 propositional variables \((A, B, C)\), and each can take two possible values.

Question: How many columns?

(A) 4; (B) 7; (C) 8; (D) 11

Answer: \(A, B, C, A \rightarrow B, B \rightarrow C, A \rightarrow C, (A \rightarrow B) \land (B \rightarrow C), ((A \rightarrow B) \land (B \rightarrow C)) \rightarrow (A \rightarrow C) \).
Tautologies and equivalences

Double implication: \((A \leftrightarrow B) \equiv ((A \rightarrow B) \land (B \rightarrow A))\)

Two (compound) propositional formulas \(P, Q\) are equivalent \((P \equiv Q)\) if and only if \((P \leftrightarrow Q)\) is a tautology.

Terminology:

- \(P\) is a **tautology** if it is always true
- \(P\) is a **contradiction** if it is always false
- \(P\) is a **contingency** if it can be both true or false