Binary Image Processing

Introduction to Computer Vision
CSE 152
Lecture 5
Announcements

• Homework 2 is due Apr 25, 11:59 PM
• Reading:
 – Szeliski, Chapter 3 Image processing, Section 3.3 More neighborhood operators
Binary System Summary

1. Acquire images and binarize (thresholding, color labels, etc.)
2. Possibly clean up image using morphological operators
3. Determine regions (blobs) using connected component exploration
4. Compute position, area, and orientation of each blob using moments
5. Compute features that are rotation, scale, and translation invariant using Moments (e.g., Eigenvalues of normalized moments)
Histogram-based Segmentation

Ex: bright object on dark background:

- Select threshold
- Create binary image:

\[I(x,y) < T \rightarrow O(x,y) = 0 \]
\[I(x,y) \geq T \rightarrow O(x,y) = 1 \]
How do we select a Threshold?

• Manually determine threshold experimentally
 – Good when lighting is stable and high contrast
• Automatic thresholding
 – P-tile method
 – Mode method
 – Otsu’s method
P-Tile Method

• If the size of the object is approximately known, pick T such that the area under the histogram corresponds to the size of the object:

[From Octavia Camps]
Mode Method

• Model intensity in each region R_i as
 “constant” + $N(0,\sigma_i)$:

If $(x, y) \in R_i$ then, $I(x, y) = \mu_i + n_i(x, y)$

$$p(n_i) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}\frac{n_i^2}{\sigma_i^2}}$$

$E(n_i) = 0$ \quad $E(n_i^2) = \sigma_i^2$

[From Octavia Camps]
Example: Image with 3 regions

If above image is noisy, histogram looks like

Ideal histogram:

• Approximate histogram as being comprised of multiple Gaussian modes.
 • How many modes?
 • Where are they centered, width

• Alternatively, the valleys are good places for thresholding to separate regions.

[From Octavia Camps]
Finding the peaks and valleys

• It is a not trivial problem:
Otsu’s Method

• Each region (called a class) is modeled by a Gaussian distribution

• Exhaustively search for threshold t such that the between class variance σ_b^2 is maximized
 – Which also minimizes the within class variance σ_w^2

• Linear Discriminant Analysis (LDA)
Otsu’s Method, 2 classes

1. Compute histogram, then probability p_k of each intensity level k

2. Compute vector of cumulative sum of class 1 probabilities $P_1(k)$

3. Compute vector of cumulative mean $m(k)$
 - Use probabilities
 - Global mean μ_G is last element of vector

4. Compute vector of between class variance $\sigma_b^2(k)$

5. Threshold k^* is the value of k for which between class variance $\sigma_b^2(k)$ is maximum
Morphological Operations
Sets of pixels: objects and structuring elements (SEs)

- Objects represented as sets
- Objects represented as a graphical image
- Digital image

Structuring element represented as a set

Structuring element represented as a graphical image

Digital structuring element

Border of background pixels around objects

Tight border around SE
Erosion

Example: square SE

Origin
Erosion

Example: elongated SE

![Diagram of erosion process with elongated SE](image-url)
Erosion

Shrinks

11x11

15x15

45x45
Dilation

Examples

Square SE

Elongated SE
Dilation

Expands

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company’s software may recognize a date using "00" as 1900 rather than the year 2000.
Opening

Structuring element rolls along inner boundary
Closing

Structuring element rolls along outer boundary
Opening and closing

Erosion

Opening

Dilation

Closing
Morphological image processing

Noisy input → Opening → Dilation → Erosion → Closing → Dilation → Erosion → Opening → Dilation → Erosion → Opening → Dilation → Erosion → Closing → Dilation → Erosion → Opening → Dilation → Erosion → Closing → Dilation → Erosion → Opening

A (foreground pixels)

B
Regions
What is a region?

- “Maximal connected set of points in the image with same brightness value” (e.g., 1)
- Two points are *connected* if there exists a continuous path joining them
- Regions can be
 - *simply connected* (for every pair of points in the region, all smooth paths can be smoothly and continuously deformed into each other)
 - *multiply connected* (holes), otherwise
Connected Regions

- What are the connected regions in this binary image?
- Which regions are contained within which region?
What are the connected regions in this binary image?
Which regions are contained within which region?
Four & Eight Connectedness

Four Connected

Eight Connected
Jordan Curve Theorem

• “Every closed curve in \mathbb{R}^2 divides the plane into two regions, the ‘outside’ and ‘inside’ of the curve.”
Problem of 4/8 Connectedness

- **8 Connected:**
 - Ones form a closed curve, but background only forms one region

- **4 Connected**
 - Background has two regions, but ones form four “open” curves (no closed curve)
To achieve consistency with respect to Jordan Curve Theorem

1. Treat background as 4-connected and foreground as 8-connected
2. Use 6-connectedness
Recursive Labeling
Connected Component Exploration

Procedure Label (Pixel)
BEGIN
 Mark(Pixel) <- Marker;
 FOR neighbor in Neighbors(Pixel) DO
 IF Image (neighbor) = 1 AND Mark(neighbor)=NIL THEN
 Label(neighbor)
 END
END

BEGIN Main
 Marker <- 0;
 FOR Pixel in Image DO
 IF Image(Pixel) = 1 AND Mark(Pixel)=NIL THEN
 BEGIN
 Marker <- Marker + 1;
 Label(Pixel);
 END;
 END
END

Globals:
Marker: integer
Mark: Matrix same size as Image, initialized to NIL
Recursive Labeling
Connected Component Exploration
Some notes

- Once labeled, you know how many regions (the value of Marker)
- From Mark matrix, you can identify all pixels that are part of each region (and compute area)
- How deep does stack go?
- Iterative algorithms
- Parallel algorithms
Properties extracted from binary image

• A tree showing containment of regions
• Properties of a region
 1. Genus – number of holes
 2. Centroid
 3. Area
 4. Perimeter
 5. Moments (e.g., measure of elongation)
 6. Number of “extrema” (indentations, bulges)
 7. Skeleton
Moments

The region S is defined as:

$$S = \{(x, y) | B(x, y) = 1\}$$

Given a pair of non-negative integers (j,k) the discrete $(j,k)^{th}$ moment of S is defined as:

$$M_{jk}(S) = \sum_{(x,y) \in S} x^j y^k$$

$$M_{jk} = \sum_{x=1}^{n} \sum_{y=1}^{m} B(x, y) x^j y^k$$

- Fast way to implement computation over n by m image or window
- One object
Moments: Area

\[S = \{ (x, y) \mid f(x, y) = 1 \} \]

\[M_{jk}(S) = \sum_{(x,y) \in S} x^j y^k \]

Example:

\[M_{00}(S) = \sum_{(x,y) \in S} x^0 y^0 = \sum_{(x,y) \in S} 1 = \#(S) \]

Area of \(S \)
Moments: Centroid

$S = \{(x, y) | f(x, y) = 1\}$

$M_{jk}(S) = \sum_{(x, y) \in S} x^j y^k$

Example:

$M_{10}(S) = \sum_{(x, y) \in S} x^1 y^0 = \sum_{(x, y) \in S} x$

$M_{01}(S) = \sum_{(x, y) \in S} x^0 y^1 = \sum_{(x, y) \in S} y$

$\frac{M_{10}(S)}{M_{00}(S)} = \frac{\sum_{(x, y) \in S} x}{\#(S)} = \bar{x}$

$\frac{M_{01}(S)}{M_{00}(S)} = \frac{\sum_{(x, y) \in S} y}{\#(S)} = \bar{y}$

Center of gravity (centroid, mean) of S
Recognition could be done by comparing moments

However, moments M_{jk} are not invariant under:

- Translation
- Scaling
- Rotation
- Skewing
Central Moments

Given a pair of non-negative integers \((j,k)\) the central \((j,k)\)th moment of \(S\) is given by:

\[
\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k
\]

Or the central moments can be computed from precomputed regular moments

\[
\mu_{jk} = \sum_{m=1}^{i} \sum_{n=1}^{j} \binom{i}{m} \binom{j}{n} (-\bar{x})^{(i-m)} (-\bar{y})^{(j-n)} M_{mn}
\]
Central Moments

\[S = \{(x, y) | f(x, y) = 1\} \]

\[\mu_{jk}(S) = \sum_{(x, y) \in S} (x - \bar{x})^j (y - \bar{y})^k \]

Translation by \(T = (a, b) \):

\[S_T = \{(x^*, y^*) | x^* = x + a, y^* = y + b, (x, y) \in S\} \]

\[\bar{x}^* = \frac{M_{10}(S_T)}{M_{00}(S_T)} = \bar{x} + a \quad \bar{y}^* = \frac{M_{01}(S_T)}{M_{00}(S_T)} = \bar{y} + b \]

\[\mu_{jk}(S_T) = \mu_{jk}(S) \]

Translation INVARIANT
Normalized Moments

Given a pair of non-negative integers \((j,k)\) the normalized \((j,k)\)th moment of \(S\) is given by:

\[
S = \{(x,y) \mid f(x,y) = 1\}
\]

\[
\mu_{jk}(S) = \sum_{(x,y) \in S} (x - \bar{x})^j (y - \bar{y})^k
\]

\[
\sigma_x = \sqrt{\frac{\mu_{20}(S)}{M_{oo}(S)}} \quad \sigma_y = \sqrt{\frac{\mu_{02}(S)}{M_{oo}(S)}}
\]

Given a pair of non-negative integers \((j,k)\) the normalized \((j,k)\)th moment of \(S\) is given by:

\[
m_{jk}(S) = \sum_{(x,y) \in S} \left(\frac{x - \bar{x}}{\sigma_x} \right)^j \left(\frac{y - \bar{y}}{\sigma_y} \right)^k
\]
Normalized Moments

\[S = \{(x, y) | f(x, y) = 1\} \]

Scaling by \((a, c)\) and translating by \(T = (b, d)\):

\[S_{ST} = \{(x^*, y^*) | x^* = ax + b, y^* = cy + d, (x, y) \in S\} \]

\[m_{jk}(S_{ST}) = m_{jk}(S) \]

Scaling and translation INVARIANT
Region orientation from Second Moment Matrix

1. Compute second centralized moment matrix

\[
\begin{bmatrix}
\mu_{20} & \mu_{11} \\
\mu_{11} & \mu_{02}
\end{bmatrix}
\]

- Symmetric, positive definite matrix
- Positive Eigenvalues
- Orthogonal Eigenvectors

1. Compute Eigenvectors of Moment Matrix to obtain orientation
2. Eigenvalues are independent of orientation and translation
Next Lecture

• Early vision
 – Linear filters

• Reading:
 – Chapter 4: Linear filters