Visual Tracking

Introduction to Computer Vision
CSE 152
Lecture 13
Announcements

- Homework 4 is due May 23, 11:59 PM
- Reading:
 - Chapter 11: Tracking
Visual Tracking

Main Challenges
1. 3D pose variation
2. Target occlusion
3. Illumination variation
4. Camera jitter
5. Expression variation etc.

[Ho, Lee, Kriegman]
Main tracking notions

- **State:** usually a finite number of parameters (a vector) that characterizes the “state” (e.g., location, size, pose, deformation) of the object being tracked.
- **Dynamics:** How does the state change over time? How is that changed constrained?
- **Representation:** How do you represent the object being tracked?
- **Prediction:** Given the state at time $t-1$, what is an estimate of the state at time t?
- **Correction:** Given the predicted state at time t and a measurement at time t, update the state.
- **Initialization:** What is the state at time $t = 0$?
What is the state?

- 2D image location \(\Phi = (u, v) \)
- Image location + scale \(\Phi = (u, v, s) \)
- Image location + scale + orientation \(\Phi = (u, v, s, \theta) \)
- Affine transformation
- 3D pose
- 3D pose plus internal shape parameters (some may be discrete)
 - e.g., for a face, 3D pose + facial expression using FACS + eye state (open/closed)
- Collections of control points specifying a spline
- Above, but for multiple objects (e.g., tracking a formation of airplanes)
- Augment above with temporal derivatives \((\phi, \dot{\phi}) \)
State Examples

– Object is ball, state is 3D position + velocity, measurements are derived from stereo pairs
– Object is person, state is body configuration, measurements are derived from video frames
– What is state here?
Example: Blob Tracker

- From input image $I(u,v)$ at time t, create a binary image by applying a function $f(I(u,v))$
- Clean up binary image using morphological operators
- Perform connected component exploration to find “blobs” (i.e., connected regions)
- Compute their moments (mean and covariance of region coordinates) and use as state
- Using state estimate from time $t-1$ and perform “data association” to identify state at time t
Blob Tracking in IR Images

- Threshold about body temperature
- Connected component analysis
- Position, scale, orientation of regions
- Temporal coherence
Tracking: Probabilistic framework

- Very general model
 - Assume there are moving objects that have an underlying state X
 - There are observations (measurements) Y, some of which are functions of this state
 - Over time
 - The state changes: X_{t-1}, X_t, X_{t+1}
 - There are new observations: Y_{t-1}, Y_t, Y_{t+1}
Instead of “knowing state” at each instant, we treat the state as random variables X_t characterized by a pdf $P(X_t)$ or perhaps conditioned on other random variables, e.g., $P(X_t | X_{t-1})$ etc.

The observation (measurement) Y_t is a random variable conditioned on the state $P(Y_t | X_t)$.

Generally, we don’t observe the state – it’s hidden.
Three main steps

• **Prediction:** we have seen y_0, \ldots, y_{i-1} — what state does this set of measurements predict for the i’th frame? to solve this problem, we need to obtain a representation of $P(X_i | Y_0 = y_0, \ldots, Y_{i-1} = y_{i-1})$.

• **Data association:** Some of the measurements obtained from the i-th frame may tell us about the object’s state. Typically, we use $P(X_i | Y_0 = y_0, \ldots, Y_{i-1} = y_{i-1})$ to identify these measurements.

• **Correction:** now that we have y_i — the relevant measurements — we need to compute a representation of $P(X_i | Y_0 = y_0, \ldots, Y_i = y_i)$.

We can try to express these conditional distributions parametrically, sample the distribution, or estimate the mode.
Simplifying Assumptions

- **Only the immediate past matters:** formally, we require

\[P(X_i | X_1, \ldots, X_{i-1}) = P(X_i | X_{i-1}) \]

- **Measurements depend only on the current state:** we assume that \(Y_i \) is conditionally independent of all other measurements given \(X_i \). This means that

\[P(Y_i | Y_1, \ldots, Y_{i-1}, X_i) = P(Y_i | X_i) \]
Tracking as induction

• Assume data association is done
 – Sometimes challenging in cluttered scenes. See work by Christopher Rasmussen on Joint Probabilistic Data Association Filters (JPDAF).
• Do correction for frame $i = 0$
• Assume we have corrected estimate for frame i
 – We can prediction the estimate for frame $i + 1$, correction for frame $i + 1$
Base case

P(y | x) is our observation model. For example, P(y | x) might be a Gaussian with mean x.

Firstly, we assume that we have $P(X_0)$

And, we make a measurement y_0

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0)P(X_0)}{P(y_0)} = \frac{P(y_0 | X_0)P(X_0)}{\int P(y_0 | X_0)P(X_0) dX_0} \propto P(y_0 | X_0)P(X_0)$$
Induction step: State Prediction

Given \(P(X_{i-1}|y_0, \ldots, y_{i-1}) \).

Prediction

Prediction involves representing

\[
P(X_i|y_0, \ldots, y_{i-1})
\]

Our independence assumptions make it possible to write

\[
P(X_i|y_0, \ldots, y_{i-1}) = \int P(X_i, X_{i-1}|y_0, \ldots, y_{i-1})dX_{i-1}
\]

\[
= \int P(X_i|X_{i-1}, y_0, \ldots, y_{i-1})P(X_{i-1}|y_0, \ldots, y_{i-1})dX_{i-1}
\]

\[
= \int P(X_i|X_{i-1})P(X_{i-1}|y_0, \ldots, y_{i-1})dX_{i-1}
\]
Induction step: State Correction

In prediction, we estimated the state X_i given the measurements up to $i-1$. Now we get the measure at time i called y_i.

Correction

Correction involves obtaining a representation of

$$P(X_i | y_0, \ldots, y_i)$$

Our independence assumptions make it possible to write

$$P(X_i | y_0, \ldots, y_i) = \frac{P(X_i, y_0, \ldots, y_i)}{P(y_0, \ldots, y_i)}$$

$$= \frac{P(y_i | X_i, y_0, \ldots, y_{i-1}) P(X_i | y_0, \ldots, y_{i-1}) P(y_0, \ldots, y_{i-1})}{P(y_0, \ldots, y_i)}$$

$$= P(y_i | X_i) P(X_i | y_0, \ldots, y_{i-1}) \frac{P(y_0, \ldots, y_{i-1})}{P(y_0, \ldots, y_i)}$$

$$= \frac{P(y_i | X_i) P(X_i | y_0, \ldots, y_{i-1})}{\int P(y_i | X_i) P(X_i | y_0, \ldots, y_{i-1}) dX_i}$$
How is this formulation used

1. It’s ignored. At each time instant, the state is estimated (perhaps a maximum likelihood estimate or something non-probabilistic).

2. The conditional distributions are represented by some convenient parametric form (e.g., Gaussian).

3. The PDFs are represented non-parametrically, and sampling techniques are used.
Linear dynamic models

- Use notation ~ to mean “has the pdf of,” $N(a, B)$ is a normal distribution with mean a and covariance B.

- A linear dynamic model has the form

\[
x_i = N(D_{i-1}x_{i-1}; \Sigma_{d_i})
\]

\[
y_i = N(M_i x_i; \Sigma_{m_i})
\]
Examples

• Points moving with constant velocity
• Points moving with constant acceleration
• Periodic motion
• Etc.
Points moving with constant velocity

• We have

\[u_i = u_{i-1} + \Delta t v_{i-1} + \epsilon_i \quad \text{Position} \]
\[v_i = v_{i-1} + \zeta_i \quad \text{Velocity} \]

– (the Greek letters denote noise terms)

• Stack \((u, v)\) into a single state vector

\[
\begin{pmatrix}
u \\
v
\end{pmatrix}_i =
\begin{pmatrix} 1 & \Delta t \\ 0 & 1 \end{pmatrix}
\begin{pmatrix} u \\
v
\end{pmatrix}_{i-1} + \text{noise}
\]

which is the form we had above
Points moving with constant acceleration

• We have

\[u_i = u_{i-1} + \Delta t v_{i-1} + \varepsilon_i \]

\[v_i = v_{i-1} + \Delta t a_{i-1} + \zeta_i \]

\[a_i = a_{i-1} + \xi_i \]

– (the Greek letters denote noise terms)

• Stack \((u, v)\) into a single state vector

\[
\begin{pmatrix}
 u \\
 v \\
 a_i
\end{pmatrix} =
\begin{pmatrix}
 1 & \Delta t & 0 \\
 0 & 1 & \Delta t \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 u \\
 v \\
 a_{i-1}
\end{pmatrix}
+ \text{noise}
\]

which is the form we had above
The Kalman Filter

• Key ideas:
 – Linear models interact uniquely well with Gaussian noise
 • Make the prior Gaussian, everything else Gaussian and the calculations are easy
 – Gaussians are really easy to represent
 • mean vector
 • covariance matrix
The Kalman Filter in 1D

• Dynamic Model

\[x_i \sim N(d_i x_{i-1}, \sigma^2_{d_i}) \]

\[y_i \sim N(m_i x_i, \sigma^2_{m_i}) \]

• Notation

Corrected mean: \(\bar{X}_i^- \)

Predicted mean: \(\bar{X}_i^+ \)

mean of \(P(X_i | y_0, \ldots, y_{i-1}) \) as \(\bar{X}_i^- \)

mean of \(P(X_i | y_0, \ldots, y_i) \) as \(\bar{X}_i^+ \)

the standard deviation of \(P(X_i | y_0, \ldots, y_{i-1}) \) as \(\sigma_i^- \)

of \(P(X_i | y_0, \ldots, y_i) \) as \(\sigma_i^+ \).
Prediction for 1-D Kalman filter

• The new state is obtained by
 – multiplying old state by known constant
 – adding zero-mean noise

• Therefore, predicted mean for new state is
 – constant times mean of old state

• Predicted variance is
 – sum of constant^2 times old state variance and noise variance

Because:
• Old state is normal random variable,
• Multiplying normal random variable by constant implies
 • mean is multiplied by a constant
 • variance is multiplied by square of constant
• Adding zero mean noise adds zero to the mean,
• Adding random variables adds variance
Dynamic Model:

\[x_i \sim N(d_i x_{i-1}, \sigma_{d_i}) \]

\[y_i \sim N(m_i x_i, \sigma_{m_i}) \]

Start Assumptions: \(\overline{x}_0^- \) and \(\sigma_0^- \) are known

Update Equations: Prediction

\[\overline{x}_i^- = d_i \overline{x}_{i-1}^+ \]

\[\sigma_i^- = \sqrt{\sigma_{d_i}^2 + (d_i \sigma_{i-1}^+)^2} \]

Update Equations: Correction

\[x_i^+ = \left(\frac{\overline{x}_i \sigma_{m_i}^2 + m_i y_i (\sigma_i^-)^2}{\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2} \right) \]

\[\sigma_i^+ = \sqrt{\left(\frac{\sigma_{m_i}^2 (\sigma_i^-)^2}{\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2} \right)} \]
Correction for 1D Kalman filter

- Notice:
 - if measurement noise is small, then we rely mainly on the measurement
 - if measurement noise is large, then we rely mainly on the prediction

\[
x_i^+ = \left(\frac{\overline{x}_i \sigma_{m_i}^2 + m_i y_i (\sigma_i^-)^2}{\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2} \right)
\]

\[
\sigma_i^+ = \sqrt{\left(\frac{\sigma_{m_i}^2 (\sigma_i^-)^2}{(\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2)} \right)\left(\frac{(\sigma_{m_i}^2 (\sigma_i^-)^2)}{(\sigma_{m_i}^2 + m_i^2 (\sigma_i^-)^2)} \right)}
\]
Multivariate Kalman Filter

Dynamic Model:
\[
x_i \sim N(D_i x_{i-1}, \Sigma_d)
\]
\[
y_i \sim N(M_i x_i, \Sigma_m)
\]

Start Assumptions: \(\overline{x}_0^- \) and \(\Sigma_0^- \) are known

Update Equations: Prediction
\[
\overline{x}_i^- = D_i \overline{x}_{i-1}^+
\]
\[
\Sigma_i^- = \Sigma_d + D_i \sigma_{i-1}^+ D_i^T
\]

Update Equations: Correction
\[
\mathcal{K}_i = \Sigma_i^- M_i^T [M_i \Sigma_i^- M_i^T + \Sigma_m]^\text{-1}
\]
\[
\overline{x}_i^+ = \overline{x}_i^- + \mathcal{K}_i [y_i - M_i \overline{x}_i^-]
\]
\[
\Sigma_i^+ = [I - \mathcal{K}_i M_i] \Sigma_i^-
\]
Another Approach: Measurement Generation

Sample from $p(X)$

Evaluate $p(I | X)$ at samples

Keep high-scoring samples

Ascend gradient & pick exemplars
Tracking Modalities
(Define the features (observations, measurements) Y_i)

- **Color**
 - Histogram [Birchfield 1998; Bradski 1998]
 - Volume [Wren et al., 1995; Bregler, 1997; Darrell, 1998]

- **Shape**
 - Deformable curve [Kass et al. 1988]
 - Template [Blake et al. 1993; Birchfield 1998]
 - Example-based [Cootes et al., 1993; Baumberg & Hogg, 1994]

- **Appearance**
 - Correlation [Lucas & Kanade, 1981; Shi & Tomasi, 1994]
 - Photometric variation [Hager & Belhumeur, 1998]
 - Outliers [Black et al., 1998; Hager & Belhumeur, 1998]
 - Nonrigidity [Black et al., 1998; Sclaroff & Isidoro, 1998]

- **Motion**
 - Background model [Wren et al., 1995; Rosales & Sclaroff, 1999; Stauffer & Grimson, 1999]
 - Optical flow [Cutler & Turk]

- **Stereo**
 - Blob correlation [Azarbayejani & Pentland, 1996]
 - Disparity map [Kanade et al., 1996; Konolige, 1997; Darrell et al., 1998]
Color Blob tracking

- Color-based tracker gets lost on white knight: Same Color
Snakes: Active Contours

• Contour C: continuous curve on smooth surface in \mathbb{R}^3
• Snake S: projection of C to image
• Curve types
 – Edge between regions on surface with contrasting properties
 – Line that contrasts with surface properties on both sides
 – Silhouette of surface against contrasting background

• General Algorithm:
 – Perform edge detection
 – Fit parametric or non-parametric curve to data
Snakes: Basic Approach

• Parameterize a closed contour

• Given a predicted state \mathbf{q}, search radially for edges

• Solve a least squares problem for new state

\[
\mathbf{Q} = (q_0 \ldots q_n, q_0 \ldots q_n)
\]

\[
\mathbf{U}(s) = \begin{pmatrix}
\mathbf{B}(s)^t & 0 \\
0 & \mathbf{B}(s)^t
\end{pmatrix}
\]

\[
\mathbf{r}(s) = \mathbf{q}^t \mathbf{B}(s) \quad \text{or} \quad \mathbf{r}(s) = \mathbf{U}(s)\mathbf{Q}
\]
Tracker Composition: Only Shape (Snakes)

- Geometry-based tracker gets lost on black pawn: Same shape
Tracker Composition

Tracker 1

Tracker 2

State Estimator

State 1

State 2

Combined state

Video stream
Tracker Composition: Color and Shape

• Combining Trackers => Robustness
Visual Tracking using regions

\[I_0 \quad \rightarrow \quad p_t \quad \rightarrow \quad I_t \]

Variability model: \[I_t = g(I_0, p_t) \]

Incremental Estimation: From \(I_0, I_{t+1} \) and \(p_t \) compute \(\Delta p_{t+1} \)

\[|| I_0 - g(I_{t+1}, p_{t+1}) ||^2 \Rightarrow \text{min} \]
Tracking using Textured Regions

- Mean intensity difference between I and affine warp of template image [Shi & Tomasi, 1994]

$$
\psi_{\text{region}}(x, y) = \sum_{(x, y) \in W} (I_R(x, y) - I_C(x, y))^2
$$

Template I_R

Tracked state I_C

$$
|I_R - I_C|
$$
Template tracking: Planar Case

Planar Object => Affine motion model: \(u'_{i} = A u_{i} + d \)

\[l_{t} = g(p_{t}, l_{0}) \]
Hager/Toyama: Tracking Cycle

- **Prediction**
 - Prior states predict new appearance

- **Image warping**
 - Generate a “normalized view”

- **Model inverse**
 - Compute error from nominal

- **State integration**
 - Apply correction to state
XVision: A tracking System

Composition of Primitive Trackers

Image Processing
Next Lectures

• Recognition, detection, and classification
• Reading:
 – Chapter 15: Learning to Classify
 – Chapter 16: Classifying Images
 – Chapter 17: Detecting Objects in Images