Overview

Introduction to Computer Vision
CSE 152
Lecture 1
• We’ll begin with some introductory material …

• … and end with
 – Syllabus
 – Organizational materials
 – Wait list
What is computer vision?

Done?
Computer Vision

• An interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos

• Other common definitions:
 – Computing properties of the 3-D world from one or more digital images (Trucco and Verri)
 – To make useful decisions about real physical objects and scenes based on sensed images (Stockman and Shapiro)
 – The construction of explicit, meaningful description of physical objects from images (Ballard and Brown)
 – Extracting descriptions of the world from pictures or sequences of pictures (Forsyth and Ponce)
Computer Vision

• An interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos

• Engineering perspective
 – Computer vision seeks to automate tasks that the human visual system can do
Related Fields

- Robotic Vision
- Multi-variable SP
- Control Robotics
- Non-linear SP
- Signal Processing
- Physics
- Optics
- Imaging
- Smart Cameras
- Neurobiology
- Biological Vision
- Image Processing
- Machine Vision
- Computer Vision
- Artificial Intelligence
- Machine Learning
- Mathematics
- Optimization
- Geometry
- Statistics
- Cognitive Vision
- Computer Intelligence
The four Rs of computer vision

• Reprojection
 – Rendering a scene from a different view, under different illumination, under different surface properties, etc.

• Reconstruction
 – Single and multiple view geometry, structure from motion, shape from X (where X is texture, shading, contour, etc.), etc.

• Registration
 – Tracking, alignment, optical flow, correspondence, etc.

• Recognition
 – Recognizing objects, scenes, events, etc.

Others may have slightly different Rs
Rudiments: The implied fifth R

- Image filtering
- Edge detection
- Interest point detection
- Probability
- Statistics
- Linear algebra
- Projective geometry
- Optics
- Fourier analysis
- Sampling
- Algorithms
- Photometry
- Physics of color
- Human vision
- Psychophysics
- Performance evaluation
Why is this hard?

What is in this image?
1. A hand holding a man?
2. A hand holding a mirrored sphere?
3. An Escher drawing?

- Interpretations are ambiguous
- The forward problem (graphics) is well-posed
- The “inverse problem” (vision) is not
Underestimates

“640K ought to be enough for anybody.”
– Bill Gates, 1981

“... in three to eight years we will have a machine with the general intelligence of an average human being ... The machine will begin to educate itself with fantastic speed. In a few months it will be at genius level and a few months after that its powers will be incalculable ...”
– Marvin Minsky, LIFE Magazine, 1970
Should Computer Vision follow from our understanding of Human Vision?

Yes & No

1. Who would ever be crazy enough to even try creating machine vision?
2. Human vision “works”, and copying is easier than creating.
3. Secondary benefit – in trying to mimic human vision, we learn about it.

1. Why limit oneself to human vision when there is even greater diversity in biological vision?
2. Why limit oneself to biological vision when there may be greater diversity in sensing mechanism?
3. Biological vision systems evolved to provide functions for “specific” tasks and “specific” environments. These may differ for machine systems.
4. Implementation – hardware is different, and synthetic vision systems may use different techniques/methodologies that are more appropriate to computational mechanisms.
Hermann Grid

Scan your eyes over the figure. Do you see the gray spots at the intersections? Stare at one of them and it will disappear.
How many red X’s are there?

Raise your hand when you know.
How many red X’s are there?

Raise your hand when you know.
The Near Future: Ubiquitous Vision

- Digital video has become very inexpensive.

- It’s widely embedded in cell phones, cars, games, etc.

- 99.9% of digitized video isn’t seen by a person.

- That doesn’t mean that only 0.1% is important!
Applications: touching your life

- Optical Character Recognition
- Football
- Movies
- Surveillance
- HCI – hand gestures
- Aids to the blind
- Face recognition & biometrics
- Road monitoring
- Industrial inspection
- Virtual Earth; street view

- Robotic control
- Autonomous driving
- Space: planetary exploration, docking
- Medicine – pathology, surgery, diagnosis
- Microscopy
- Military
- Remote Sensing
- Digital photography
- Google Goggles
- Video games
Earth viewers (3D modeling)

Image from Microsoft’s Virtual Earth (now Bing Maps)
(see also: Google Earth)
Photosynth

http://photosynth.net

Based on Photo Tourism technology developed by Noah Snavely, Steve Seitz, and Rick Szeliski
Optical character recognition (OCR)
Technology to convert scanned docs to text

- If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs

License plate readers
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition
Face detection

• Most new digital cameras now detect faces, so do smart phones…
 – Canon, Sony, Fuji, …
Smile detection

The Smile Shutter flow
Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera
Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics (now part of iRobot)
“A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it… “
Face recognition

Who is she?
Vision-based biometrics

1984
Age 12

2002
Age 30

“How the Afghan Girl was Identified by Her Iris Patterns” Read the story
Login without a password...

Fingerprint scanners on laptops, smart phones, mice, and other devices

Face recognition systems now beginning to appear more widely on computers and smart phones
Object recognition (in mobile phones)

- Point & Find, Nokia
- SnapTell.com (now Amazon)
- Mobile Acuity
- Google Goggles
Image-based search
Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC
Special effects: motion capture

Facial motion capture
Light Fields

- An array of cameras

The Matrix
(bullet time)

Application:
view synthesis
Computational photography

• Light-field cameras
 – A dense array of micro-lenses

Application: refocus
Sports

- Football first down line

Sportvision first down line
Nice explanation on www.howstuffworks.com
Augmented reality

• Text detection, localization, and translation, then render with similar font
Augmented reality

• Pokémon Go
Augmented reality

• Microsoft HoloLens

Simultaneous localization and mapping (SLAM)
Vision-based interaction (and games)

Nintendo Wii has camera-based IR tracking built in

Your face on a 3D avatar

Playmotion game a Disney Epcot

Xbox Kinect
Structured light-based sensor
Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read “Computer Vision on Mars” by Matthies et al.
Robotics

NASA’s Mars Spirit Rover

http://www.robocup.org/
Smart cars

• Mobileye
 – Vision systems currently in high-end BMW, GM, Volvo models

Slide content courtesy of Amnon Shashua
Autonomous Vehicles
First person vision

Google Glass

Oracam
Medical imaging

3D imaging
MRI, CT

Image guided surgery
Grimson et al., MIT
Automatic image captioning

- Deep learning
Automatic image captioning

• Deep learning
Video understanding

• Deep learning
Current state of the art

• You just saw examples of current systems.
 – Many of these are less than 5 years old

• This is a very active research area, and rapidly changing
 – Many new applications in the next 5 years

• To learn more about vision applications and companies
 – David Lowe maintains an excellent overview of vision companies
 • http://www.cs.ubc.ca/spider/lowe/vision.html
Image Interpretation - Cues

• Variation in appearance in multiple views
 – stereo
 – motion
• Shading & highlights
• Shadows
• Contours
• Texture
• Blur
• Geometric constraints
• Prior knowledge
An example of a cue:
Shading and lighting

Shading as a result of differences in lighting is

1. A source of information
2. An annoyance
Illumination Variability
An annoyance

“The variations between the images of the same face due to illumination and viewing direction are almost always larger than image variations due to change in face identity.”
-- Moses, Adini, Ullman, ECCV ‘94
Photometric image formation

Need bidirectional reflectance distribution function (BRDF) at point on surface
An implemented algorithm: Relighting

Single Light Source
The course

• Part 1: The Physics of Imaging
• Part 2: Early Vision
• Part 3: Reconstruction
• Part 4: Recognition
Part 1 of Course: The Physics of Imaging

• How images are formed
 – Cameras
 • What a camera does
 • Projection models (projective spaces, etc.)
 • How to tell where the camera was located
 – Light
 • How to measure light
 • What happens to light at surfaces
 • How the brightness values we see in images are determined
 – Color
 • The underlying mechanisms of color
 • How to describe it and measure it
Cameras, lenses, and sensors

- Pinhole cameras
- Lenses
- Projection models
- Geometric camera parameters

Figure 1.16 The first photograph on record, *la table servie*, obtained by Nicéphore Niepce in 1822. *Collection Harlinge–Viølet.*

A real camera ... and its model
Geometry

• How do 3D world points project to 2D image points?
Lighting & Photometry

• How does measurement relate to light energy?

• Sensor response
• Light sources
• Reflectance
Color
Color
Part 2: Early Vision in One Image

- Representing small patches of image
- Noise
- Filtering
- Edge detection
- Corner detection
- Texture
- Segmentation
Segmentation

• Which image components “belong together”?
 – Belong together \(\approx \) lie on the same object

• Cues
 – Similar color
 – Similar texture
 – Not separated by contour
 – Form a suggestive shape when assembled
Boundary Detection

http://www.robots.ox.ac.uk/~vdg/dynamics.html
Boundary Detection: Local cues
Boundary Detection

(Sharon, Balun, Brandt, Basri)
Part 3: Reconstruction from Multiple Images

• Photometric Stereo
 – What we know about the world from lighting changes

• The geometry of multiple views
 – Stereopsis
 • What we know about the world from having two eyes
 – Structure from motion
 • What we know about the world from having many eyes (or, more commonly, our eyes moving)
Mars Rover

Spirit

Curiosity

From Viking Lander, 1976
Façade (Debevec, Taylor and Malik, 1996)
Reconstruction from multiple views, constraints, rendering

Architectural modeling:
• photogrammetry;
• view-dependent texture mapping;
• model-based stereopsis.

Images with marked features
Resulting model & Camera Positions
Recovered model edges reprojected through recovered camera positions into the three original images
Video-Motion Analysis

- Where “things” are moving in image – segmentation
- Determining observer motion (egomotion)
- Determining scene structure
- Tracking objects
- Understanding activities & actions
Forward Translation & Focus of Expansion

[Gibson, 1950]
Part 4: Recognition

Given a database of objects and an image determine what, if any of the objects are present in the image.
Recognition Challenges

• Within-class variability
 – Different objects within the class have different shapes or different material characteristics
 – Deformable
 – Articulated
 – Compositional

• Pose variability:
 – 2-D image transformation (translation, rotation, scale)
 – 3-D pose variability (perspective, orthographic projection)

• Lighting
 – Direction (multiple sources & type)
 – Color
 – Shadows

• Occlusion – partial

• Clutter in background -> false positives
Face Detection (not face recognition): Classify face vs. non-face
Why is Face Recognition Hard?

Many faces of Madonna
Syllabus

• Instructor: Ben Ochoa
 – Office hours: Wednesdays, 8:00 PM-9:00 PM (primary), and Mondays, 8:00 PM-9:00 PM (secondary)
• TAs: Jean Choi, Jingwen Wang, Gautam Nain, and Yunhan Ma
 – Office hours: to be determined
• Course website
 – https://cseweb.ucsd.edu/classes/sp18/cse152-a/
• 19 lecture meetings
 – No meeting on Memorial Day Observance (Monday, May 28)
• Weekly discussion section (optional)
• Class discussion
 – Piazza
Syllabus

• Grading
 – 5 homework assignments
 • By hand and programming using Python
 • Late policy: 15% grade reduction for each 12 hours late
 – Will not be accepted 72 hours after the due date
 – No midterm exams
 – No final exam*
 – Piazza
 • Ask (and answer) questions using Piazza, not email
 • Good participation could raise your grade (e.g., raise a B+ to an A-)
Textbook (optional)

 - David A. Forsyth and Jean Ponce
Academic Integrity Policy

Integrity of scholarship is essential for an academic community. The University expects that both faculty and students will honor this principle and in so doing protect the validity of University intellectual work. For students, this means that all academic work will be done by the individual to whom it is assigned, without unauthorized aid of any kind.
Collaboration Policy

It is expected that you complete your academic assignments on your own and in your own words and code. The assignments have been developed by the instructor to facilitate your learning and to provide a method for fairly evaluating your knowledge and abilities (not the knowledge and abilities of others). So, to facilitate learning, you are authorized to discuss assignments with others; however, to ensure fair evaluations, you are not authorized to use the answers developed by another, copy the work completed by others in the past or present, or write your academic assignments in collaboration with another person.
Academic Integrity Violation

If the work you submit is determined to be other than your own, you will be reported to the Academic Integrity Office for violating UCSD's Policy on Integrity of Scholarship. In accordance with the CSE department academic integrity guidelines, students found committing an academic integrity violation will receive an F in the course.
Wait List

• Number of enrolled students is limited by
 – Size of lecture and discussion rooms
 – Number of instructional assistants (TAs and tutors)

• General advice
 – Wait for as long as you can

• Concurrent enrollment (Extension) students have lowest priority