(1) (5 Points) Suppose there is a single feature, denoted by X which takes values in the set \{1, 2, 3\} and a binary label $Y \in \{0, 1\}$. The distribution D is described as follows:

\[
\Pr(X = i) = \frac{1}{3}, \ i \in \{1, 2, 3\}
\]
\[
\Pr(Y = 1|X = i) = 1, \ i \in \{1, 3\}
\]
\[
\Pr(Y = 0|X = i) = 1, \ i \in \{2\}
\]

Let h be the classifier: $h(x) = 1$ if $x > 1.5$ and 0 otherwise. Calculate the error of h with respect to D.

(2) (5 Points) Suppose you have a dataset of images of digits, and you use it to build a linear classifier for classifying the images into the corresponding digits. Which of the following actions will reduce the bias of your classifier? Justify your answer.

(a) Collect more training data.

(b) Switch to a kernel classifier with a quadratic kernel (that is, where $K(x, z) = \langle x, z \rangle^2$).