Problem 1: 6 points

In class, we saw that if we have two labels, then the error of a classifier which guesses completely randomly is 0.5. In this problem, we look at what happens when there are \(k > 2 \) labels.

1. Random guesser Geser knows that there are \(k \) labels, and for each example, selects a label out of \(\{1, \ldots, k\} \) uniformly at random. What is the error of Geser?

2. Now suppose we have a more sophisticated random guesser Zavulon who knows that \(w_1 \) fraction of the data distribution has label 1, \(w_2 \) fraction has label 2, and so on. For each example, Zavulon also selects a label out of \(\{1, \ldots, k\} \) at random, but he selects label 1 with probability \(w_1 \), label 2 with probability \(w_2 \) and so on. What is the error of Zavulon?

Problem 2: 14 points

Consider the following two data distributions \(D_1 \) and \(D_2 \) over labeled examples. There is a single feature, denoted by \(X \) which takes values in the set \(\{1, 2, 3, 4\} \) and a binary label \(Y \in \{0, 1\} \). \(D_1 \) is described as follows:

\[
\begin{align*}
\Pr(X = i) &= \frac{1}{4}, \quad i \in \{1, 2, 3, 4\} \\
\Pr(Y = 1|X = i) &= 1, \quad i \in \{1, 4\} \\
\Pr(Y = 0|X = i) &= 1, \quad i \in \{2, 3\}
\end{align*}
\]

\(D_2 \) is described as follows.

\[
\begin{align*}
\Pr(X = i) &= \frac{1}{4}, \quad i \in \{1, 2, 3, 4\} \\
\Pr(Y = 1|X = i) &= \frac{i}{10}, \quad i \in \{1, 2, 3, 4\}
\end{align*}
\]

1. Consider the following classifier \(h \): \(h(x) = 1 \) if \(x > 1.5 \) and 0 otherwise. What is the true error of \(h \) when the true data distribution is \(D_1 \)?

2. Suppose our concept class \(C \) is the set of all classifiers of the form: \(h_t(x) = 1 \) if \(x > t \) and 0 otherwise. Write down a classifier in this concept class that minimizes the true error when the data distribution is \(D_1 \). What is the true error of this classifier? Do we have a non-zero bias when the concept class is \(C \) and the data distribution is \(D_1 \)?

3. Repeat parts (1) and (2) for the data distribution \(D_2 \).