CSE 140: Components and Design Techniques for Digital Systems

Lecture 7: Sequential Networks

CK Cheng
Dept. of Computer Science and Engineering
University of California, San Diego
Part II: Sequential Networks

• Introduction
 – Sequential circuits
 – Memory hierarchy
 – Basic mechanism of memory

• Basic Building Blocks
 – Latches
 – Flip-Flops
 – Examples of Memory Modules

• Implementation
 – Finite state machine
What is a sequential circuit?

“A circuit whose output depends on current inputs and past outputs”

“A circuit with memory”

Memory: a key parameter is Time

![Diagram of a sequential circuit](chart)
Sequential Networks: Key features

Memory: Flip flops
Specification: Finite State Machines
Implementation: Excitation Tables
Main Theme: Timing

Present time = t and **next time = t+1**
Timing constraints to separate the present and next times.

\[y_i = f_i(S^t, X) \]
\[s_i^{t+1} = g_i(S^t, X) \]
Sequential Networks: Key features

Main Theme: Timing

Present time = t and next time = t+1

Timing constraints to separate the present and next times.

\[y_i = f_i(S^t, X) \]
\[s_{i}^{t+1} = g_i(S^t, X) \]
Memory Hierarchy

- What are registers made of?
 Flip-Flops, Latches

- Diagram:
 - Hard disk
 - Main Memory
 - Cache
 - Registers
Fundamental Memory Mechanism

\[\text{Diagram:}\]

- \(I_2 \) connected to \(\bar{Q} \) and \(I_1 \) connected to \(Q \)
- \(I_1 \) connected to \(Q \)
- \(I_2 \) connected to \(\bar{Q} \)
Memory Mechanism: Capacitive Load

- Fundamental building block of sequential circuits
- Two outputs: \overline{Q}, Q
- There is a feedback loop!
 - In a typical combinational logic, there is no feedback loop.
- No inputs
Capacitive Loads

• Consider the two possible cases:
 – \(Q = 0 \): then \(Q' = 1 \) and \(Q = 0 \) (consistent)
 – \(Q = 1 \): then \(Q' = 0 \) and \(Q = 1 \) (consistent)
 – Bistable circuit stores 1 bit of state in the state variable, \(Q \) (or \(Q' \))
 – Hold the value due to capacitive charges and feedback loop strengthening

• But there are no inputs to control the state
iClicker

Q. Given a memory component made out of a loop of inverters, the number of inverters in the loop has to be

A. Even
B. Odd
C. No constraints
Basic Building Blocks

- Latches (Level Sensitive)
 - SR Latches, D Latches
- Flip-Flops (Edge Triggered)
 - D FFs, (JK FFs, T FFs)
- Examples of Memory Modules
 - Registers, Shift Registers, Pattern Recognizers, Counters, FIFOs
Flight attendant call button

• Flight attendant call button
 – Press call: light turns on
 • *Stays on* after button released
 – Press cancel: light turns off
 – Logic gate circuit to implement this?

• SR latch implementation
 – Call=1 : sets Q to 1 and keeps it at 1
 – Cancel=1 : resets Q to 0
SR (Set/Reset) Latch

• SR Latch

• Consider the four possible cases:
 – $S = 1, R = 0$
 – $S = 0, R = 1$
 – $S = 0, R = 0$
 – $S = 1, R = 1$
SR Latch Analysis

- $S = 1$, $R = 0$: then $Q = 1$ and $\overline{Q} = 0$

- $S = 0$, $R = 1$: then $Q = 0$ and $\overline{Q} = 1$
SR Latch Analysis

- $S = 0, R = 0$: then $Q = Q_{prev}$

 $Q_{prev} = 0$

- $S = 1, R = 1$: then $Q = 0$ and $\overline{Q} = 0$
SR Latch

Inputs: S, R
State: (Q, y)

\[y = (S+Q)' \]
\[Q = (R+y)' \]
Truth table of SR latch with incremental steps in time

<table>
<thead>
<tr>
<th>id</th>
<th>S</th>
<th>R</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Q = (R+y)' \]

\[y = (S+Q)' \]
<table>
<thead>
<tr>
<th>id</th>
<th>S</th>
<th>R</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

“State Table” of SR latch

<table>
<thead>
<tr>
<th>Qy\SR</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>
CASES:
SR=01: \((Q,y) = (0,1)\)
SR=10: \((Q,y) = (1,0)\)
SR=11: \((Q,y) = (0,0)\)
SR=00: \((Q,y)\) does not change if \((Q,y) = (1,0)\) or \((0,1)\)

However, when \((Q,y) = (0,0)\) or \((1,1)\), the output keeps changing.

Remark: To verify the design, we need to enumerate all combinations.
State Table and State Diagram

State Table

<table>
<thead>
<tr>
<th>(Q_y)</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>
CASES:
SR=01: \((Q,y) = (0,1)\)
SR=10: \((Q,y) = (1,0)\)
SR=11: \((Q,y) = (0,0)\)
SR= 00: \((Q,y)\) does not change if \((Q,y)=(1,0)\) or \((0,1)\)

However, when \((Q,y) = (0,0)\) or \((1,1)\), the output keeps changing.

Q. Suppose that we can set the initial state \((Q,y)=(0,1)\). To avoid the SR latch output from toggling or behaving in an undefined way which input combinations should be avoided:
A. \((S, R) = (0, 0)\)
B. \((S, R) = (1, 1)\)
C. None of the above
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing.

We set the initial state (Q,y)=(0,1) or (1,0). To avoid the state (Q,y)= (0,0) or (1,1), we block the input SR=11. Thus, without input SR=11, the state can only be (Q,y)=(0,1) or (1,0).
The only way to reach state \((Q,y)=(0,0)\) or \((1,1)\) is via edge labeled \(SR=11\).
The only way to reach state \((Q,y)=(0,0)\) or \((1,1)\) is via edge labeled \(SR=11\).
SR Latch Analysis

- $S = 0$, $R = 0$: then $Q = Q_{prev}$ and $\overline{Q} = \overline{Q}_{prev}$ (memory!)

$Q_{prev} = 0$

\[\begin{align*}
R & 0 \quad N1 \quad 0 \quad Q \\
1 & \quad 0 \quad N2 \quad 1 \quad Q
\end{align*}\]

$Q_{prev} = 1$

\[\begin{align*}
R & 0 \quad N1 \quad 1 \quad Q \\
0 & \quad 0 \quad N2 \quad 0 \quad Q
\end{align*}\]

- $S = 1$, $R = 1$: then $Q = 0$ and $\overline{Q} = 0$ (invalid state: $Q \neq \text{NOT } \overline{Q}$)

\[\begin{align*}
R & 1 \quad N1 \quad 0 \quad Q \\
0 & \quad 0 \quad N2 \quad 0 \quad \overline{Q}
\end{align*}\]
SR Latch

CASES
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR = 00: if (Q,y) = (0,0) or (1,1), the output keeps changing
Solutions: Avoid the case that SR = (1,1).

State table

<table>
<thead>
<tr>
<th>PS</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(t)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Characteristic Expression

Q(t+1) = S(t)+R’(t)Q(t)

Q(t+1) NS (next state)
SR Latch Symbol

• SR stands for Set/Reset Latch
 – Stores one bit of state (Q)

• Control what value is being stored with S, R inputs
 – Set: Make the output 1 ($S = 1$, $R = 0$, $Q = 1$)
 – Reset: Make the output 0 ($S = 0$, $R = 1$, $Q = 0$)

• Must do something to avoid invalid state (when $S = R = 1$)
D Latch

• Two inputs: CLK, D
 – CLK: controls when the output changes
 – D (the data input): controls what the output changes to

• Function
 – When $CLK = 1$, D passes through to Q (the latch is transparent)
 – When $CLK = 0$, Q holds its previous value (the latch is opaque)

• Avoids invalid case when $Q \neq \text{NOT} \bar{Q}$
D Latch Internal Circuit

\[\text{SR Latch Symbol} \]

\[\begin{array}{c}
\text{CLK} \\
\text{D} \\
\text{Q} \\
\text{Q}
\end{array} \]
D Latch Internal Circuit

CLK
D

CLK
D

<table>
<thead>
<tr>
<th>CLK</th>
<th>D</th>
<th>\overline{D}</th>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>\overline{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Q</td>
<td></td>
</tr>
</tbody>
</table>
D Latch Internal Circuit

CLK → D

\[D \]

R \[Q \]

S \[\bar{Q} \]

\[\bar{Q} \]

<table>
<thead>
<tr>
<th>(CLK)</th>
<th>(D)</th>
<th>(\bar{D})</th>
<th>(S)</th>
<th>(R)</th>
<th>(Q)</th>
<th>(\bar{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>(Q_{\text{prev}})</td>
<td>(\bar{Q}_{\text{prev}})</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
D Flip-Flop

- Two inputs: CLK, D
- **Function**
 - The flip-flop “samples” D on the rising edge of CLK
 - When CLK rises from 0 to 1, D passes through to Q
 - Otherwise, Q holds its previous value
 - Q changes only on the rising edge of CLK
- A flip-flop is called an *edge-triggered* device because it is activated on the clock edge
D Flip-Flop Internal Circuit
D Flip-Flop Internal Circuit

• Two back-to-back latches (L1 and L2) controlled by complementary clocks
• When $CLK = 0$
 – L1 is transparent, L2 is opaque
 – D passes through to N1
• When $CLK = 1$
 – L2 is transparent, L1 is opaque
 – N1 passes through to Q
• Thus, on the edge of the clock (when CLK rises from 0 → 1)
 – D passes through to Q
D Flip-Flop vs. D Latch

CLK
D Q
Q

CLK
D Q
Q

CLK
D

Q (latch)

Q (flop)
D Flip-Flop vs. D Latch

CLK
D Q
Q

D Q
Q

CLK
D
Q (latch)

Q (flop)
Latch and Flip-flop (two latches)

A latch can be considered as a door

CLK = 0, door is shut
CLK = 1, door is unlocked

A flip-flop is a two door entrance

CLK = 1
CLK = 0
CLK = 1
D Flip-Flop (Delay)

![D Flip-Flop Diagram]

<table>
<thead>
<tr>
<th>Id</th>
<th>D</th>
<th>Q(t)</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

State table

- **Characteristic Expression:** $Q(t+1) = D(t)$

- **NS =** $Q(t+1)$
iClicker

Can D flip-flop serve as a memory component?
A. Yes
B. No
Rising vs. Falling Edge D Flip-Flop

The triangle means clock input, edge triggered

Symbol for rising-edge triggered D flip-flop

Internal design: Just invert servant clock rather than master

Symbol for falling-edge triggered D flip-flop

rising edges

Clk

falling edges

Clk
Enabled D-FFs

- **Inputs**: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored

- **Function**
 - $EN = 1$: D passes through to Q on the clock edge
 - $EN = 0$: the flip-flop retains its previous state
Resettable Flip-Flops

- **Inputs**: $CLK, D, Reset$
- **Function**:
 - $\textbf{Reset = 1}$: Q is forced to 0
 - $\textbf{Reset = 0}$: flip-flop behaves as ordinary D flip-flop
- **Two types**:
 - **Synchronous**: resets at the clock edge only
 - **Asynchronous**: resets immediately when $\text{Reset} = 1$
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop circuit:
- There are also synch/asynch settable FFs

Sources: TSR, Katz, Boriello & Vahid
Bit Storage Overview

SR latch

- S (set)
- R (reset)

Level-sensitive SR latch

- S
- C
- R1

D latch

- D
- C

D flip-flop

- D
- C

S=1 sets Q to 1, R=1 resets Q to 0. Problem: SR=11 yield undefined Q.

S and R only have effect when C=1. We can design outside circuit so SR=11 never happens when C=1. Problem: avoiding SR=11 can be a burden.

SR can’t be 11 if D is stable before and while C=1, and will be 11 for only a brief glitch even if D changes while C=1. *Transition may cross many levels of latches.*

Only loads D value present at rising clock edge, so values can’t propagate to other flip-flops during same clock cycle.

Transition happens between two level of flip-flops.
Building blocks with FFs: Basic Register

Diagram showing connections between registers and inputs/outputs.
Shift register

- Holds & shifts samples of input

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shift register

- Holds & shifts samples of input

![Shift Register Diagram]

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Pattern Recognizer

- Combinational function of input samples
Counters

• Sequences through a fixed set of patterns
Describing Sequential Ckts

- State diagrams and next-state tables nor are suitable for describing very large digital designs
 - large circuits must be described in a modular fashion -- as a collection of cooperating FSMs
- BSV is a modern programming language to describe cooperating FSMs
 - We will give various examples of FSMs in BSV
Modulo-4 counter circuit

\[q_{0t+1} = \sim \text{inc} \cdot q_{0t} + \text{inc} \cdot \sim q_{0t} \]
\[q_{1t+1} = \sim \text{inc} \cdot q_{1t} + \text{inc} \cdot \sim q_{1t} \cdot q_{0t} + \text{inc} \cdot q_{1t} \cdot \sim q_{0t} \]

“Optimized” logic
\[q_{0t+1} = \text{inc} \oplus q_{0t} \]
\[q_{1t+1} = (\text{inc} == 1) \ ? q_{0t} \oplus q_{1t} : q_{1t} \]
Modulo-4 counter circuit

$q_0^{t+1} = \sim\text{inc} \cdot q_0^t + \text{inc} \cdot \sim q_0^t$

$q_1^{t+1} = \sim\text{inc} \cdot q_1^t + \text{inc} \cdot \sim q_1^t \cdot q_0^t + \text{inc} \cdot q_1^t \cdot \sim q_0^t$

“Optimized” logic

$q_0^{t+1} = \text{inc} \oplus q_0^t$

$q_1^{t+1} = (\text{inc == 1}) \ ? \ q_0^t \oplus q_1^t : q_1^t$

<table>
<thead>
<tr>
<th>PS\input</th>
<th>inc=0</th>
<th>inc=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>00</td>
</tr>
</tbody>
</table>

PS: $q_1^t \ q_0^t$, NS: $q_1^{t+1} \ q_0^{t+1}$
modulo4 counter in BSV

```haskell
module moduloCounter (Counter);
    Reg#(Bit#(2)) cnt <- mkReg(0);
    method Action inc;
        cnt <= {!cnt[1]&cnt[0] | cnt[1]&!cnt[0], !cnt[0]};
    endmethod
    method Bit#(2) read;
        return cnt;
    endmethod
endmodule
```

State specification

Initial value

An action to specify how the value of the cnt is to be set
Interface

• Modulo counter has the following interface, i.e., type

```plaintext
interface Counter;
    method Action inc;
    method Bit#(2) read;
endinterface
```

• An interface can have many different implementations
 – For example, the numbers may be represented as Gray code
Modules

• A module in BSV is like a class definition in Java or C++
 – It has internal state
 – The internal state can only be read and manipulated by the (interface) methods
 – An action specifies which state elements are to be modified
 – Actions are atomic -- either all the specified state elements are modified or none of them are modified (no partially modified state is visible)
FIFO Interface

```plaintext
interface Fifo#(numeric type size, type t);
  method Bool notFull;
  method Bool notEmpty;
  method Action enq(t x);
  method Action deq;
  method t first;
endinterface

- enq should be called only if notFull returns True;
- deq and first should be called only if notEmpty returns True
```
module mkCFFifo (Fifo#(1, t));
 Reg#(t) d <- mkRegU;
 Reg#(Bool) v <- mkReg(False);
method Bool notFull;
 return !v;
endmethod
method Bool notEmpty;
 return v;
endmethod
method Action enq(t x);
 v <= True; d <= x;
endmethod
method Action deq;
 v <= False;
endmethod
method t first;
 return d;
endmethod
endmodule
FIFO Module: methods with guarded interfaces

- Every method has a guard (rdy wire); the value returned by a value method is meaningful only if its guard is true.
- Every action method has an enable signal (en wire); an action method is invoked (en is set to true) only if the guard is true.
- Guards make it possible to transfer the responsibility of the correct use of a method from the user to the compiler.
- Guards are extraordinarily convenient for programming and also enhance modularity of the code.

```Verilog
interface Fifo#(numeric type size, type t);
    method Action enq(t x);
    method Action deq;
    method t first;
endinterface
```
One-Element FIFO Implementation with guards

module mkCFFifo (Fifo#(1, t));
Reg#(t) d <- mkRegU;
Reg#(Bool) v <- mkReg(False);
method Action enq(t x) if (!v); not full
 v <= True; d <= x;
endmethod
method Action deq if (v);
 v <= False;
endmethod
method t first if (v);
 return d;
endmethod
endmodule