Part II: Sequential Networks

• Introduction
 – Sequential circuits
 – Memory hierarchy
 – Basic mechanism of memory

• Basic Building Blocks
 – Latches
 – Flip-Flops
 – Examples of Memory Modules

• Implementation
 – Finite state machine
What is a sequential circuit?

“A circuit whose output depends on current inputs and past outputs”

“A circuit with memory”

Memory: a key parameter is Time

Memory / Time steps

\[\text{Clock} \]

\[X_i \rightarrow S_i \rightarrow Y_i \]
Sequential Networks: Key features

Memory: Flip flops
Specification: Finite State Machines
Implementation: Excitation Tables
Main Theme: Timing

Present time = t and next time = t+1
Timing constraints to separate the present and next times.

\[y_i = f_i(S^t, X) \]
\[s_{i,t+1} = g_i(S^t, X) \]
Sequential Networks: Key features

Main Theme: Timing

Present time = \(t \) and next time = \(t+1 \)

Timing constraints to separate the present and next times.

\[
y_i = f_i(S^t, X)
\]

\[
s_{i \, t+1} = g_i(S^t, X)
\]
Memory Hierarchy

- What are registers made of?

 Flip-Flops, Latches
Fundamental Memory Mechanism

\[I_2 \rightarrow \bar{Q} \rightarrow I_1 \rightarrow Q \]

\[I_1 \rightarrow Q \]

\[I_2 \rightarrow \bar{Q} \]
Memory Mechanism: Capacitive Load

• Fundamental building block of sequential circuits
• Two outputs: \bar{Q}, Q
• There is a feedback loop!
 • In a typical combinational logic, there is no feedback loop.
• No inputs
Capacitive Loads

• Consider the two possible cases:
 – $Q = 0$: then $Q’ = 1$ and $Q = 0$ (consistent)
 – $Q = 1$: then $Q’ = 0$ and $Q = 1$ (consistent)
 – Bistable circuit stores 1 bit of state in the state variable, Q (or Q’)
 – Hold the value due to capacitive charges and feedback loop strengthening

• But there are no inputs to control the state
Q. Given a memory component made out of a loop of inverters, the number of inverters in the loop has to be
A. Even
B. Odd
C. No constraints
Basic Building Blocks

• Latches (Level Sensitive)
 – SR Latches, D Latches

• Flip-Flops (Edge Triggered)
 – D FFs, (JK FFs, T FFs)

• Examples of Memory Modules
 – Registers, Shift Registers, Pattern Recognizers, Counters, FIFOs
Flight attendant call button

- Flight attendant call button
 - Press call: light turns on
 - *Stays on* after button released
 - Press cancel: light turns off
 - Logic gate circuit to implement this?

- SR latch implementation
 - Call=1 : sets Q to 1 and keeps it at 1
 - Cancel=1 : resets Q to 0
SR (Set/Reset) Latch

• SR Latch

• Consider the four possible cases:
 – $S = 1, R = 0$
 – $S = 0, R = 1$
 – $S = 0, R = 0$
 – $S = 1, R = 1$
SR Latch Analysis

- $S = 1$, $R = 0$: then $Q = 1$ and $\bar{Q} = 0$

- $S = 0$, $R = 1$: then $Q = 0$ and $\bar{Q} = 1$
SR Latch Analysis

- $S = 0$, $R = 0$: then $Q = Q_{\text{prev}}$

 $Q_{\text{prev}} = 0$

- $S = 1$, $R = 1$: then $Q = 0$ and $\overline{Q} = 0$
SR Latch

Inputs: S, R
State: (Q, y)

\begin{align*}
y &= (S+Q)' \\
Q &= (R+y)'
\end{align*}
Truth table of SR latch with incremental steps in time

<table>
<thead>
<tr>
<th>id</th>
<th>S</th>
<th>R</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[Q = (R+y)' \]

\[y = (S+Q)' \]
“State Table” of SR latch

<table>
<thead>
<tr>
<th>id</th>
<th>S</th>
<th>R</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
<th>Qt</th>
<th>yt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Qy\SR</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR=00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)

However, when (Q,y) = (0,0) or (1,1), the output keeps changing

Remark: To verify the design, we need to enumerate all combinations.
State Table and State Diagram

State Table

<table>
<thead>
<tr>
<th>(\text{SR} \backslash \text{Qy})</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>11</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>00</td>
</tr>
</tbody>
</table>

State Diagram

State Table and State Diagram
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing

Q. Suppose that we can set the initial state (Q,y)=(0,1). To avoid the SR latch output from toggling or behaving in an undefined way which input combinations should be avoided:
A. (S, R) = (0, 0)
B. (S, R) = (1, 1)
C. None of the above
CASES:
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR= 00: (Q,y) does not change if (Q,y)=(1,0) or (0,1)
 However, when (Q,y) = (0,0) or (1,1), the output keeps changing

We set the initial state (Q,y)= (0,1) or (1,0). To avoid the state
(Q,y) = (0,0) or (1,1), we block the input SR=11.
Thus, without input SR=11, the state can only be (Q,y) = (0,1)
or (1,0).
The only way to reach state \((Q,y)=(0,0)\) or \((1,1)\) is via edge labeled \(SR=11\).
The only way to reach state $(Q,y)=(0,0)$ or $(1,1)$ is via edge labeled $SR=11$.
SR Latch Analysis

- $S = 0, R = 0$: then $Q = Q_{\text{prev}}$ and $\bar{Q} = \bar{Q}_{\text{prev}}$ (memory!)

$$Q_{\text{prev}} = 0$$

$$Q_{\text{prev}} = 1$$

- $S = 1, R = 1$: then $Q = 0$ and $\bar{Q} = 0$ (**invalid state**: $Q \neq \text{NOT} \bar{Q}$)

$S = 1, R = 1$
SR Latch

CASES
SR=01: (Q,y) = (0,1)
SR=10: (Q,y) = (1,0)
SR=11: (Q,y) = (0,0)
SR = 00: if (Q,y) = (0,0) or (1,1), the output keeps changing
Solutions: Avoid the case that SR = (1,1).

State table

<table>
<thead>
<tr>
<th>PS</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(t)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Characteristic Expression

Q(t+1) = S(t)+R’(t)Q(t)

Q(t+1) NS (next state)
SR Latch Symbol

- SR stands for Set/ResetLatch
 - Stores one bit of state (Q)
- Control what value is being stored with S, R inputs
 - Set: Make the output 1 ($S = 1$, $R = 0$, $Q = 1$)
 - Reset: Make the output 0 ($S = 0$, $R = 1$, $Q = 0$)

- Must do something to avoid invalid state (when $S = R = 1$)
D Latch

- **Two inputs:** \(CLK, D\)
 - \(CLK\): controls *when* the output changes
 - \(D\) (the data input): controls *what* the output changes to

- **Function**
 - When \(CLK = 1\), \(D\) passes through to \(Q\) (the latch is *transparent*)
 - When \(CLK = 0\), \(Q\) holds its previous value (the latch is *opaque*)

- **Avoids invalid case when** \(Q \neq \text{NOT} \overline{Q}\)
D Latch Internal Circuit

- R Q
- S Q

- CLK
- D Q
- Q
\textbf{D Latch Internal Circuit}

\begin{tabular}{c|c|c|c|c|c|c}
\textit{CLK} & \textit{D} & \overline{D} & S & R & Q & \overline{Q} \\
\hline
0 & X & & & & & \\
1 & 0 & & & & & \\
1 & 1 & & & & & \\
\end{tabular}
D Latch Internal Circuit

<table>
<thead>
<tr>
<th>CLK</th>
<th>D</th>
<th>D</th>
<th>S</th>
<th>R</th>
<th>Q</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Q_{prev}</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
D Flip-Flop

- Two inputs: \(CLK, D \)
- **Function**
 - The flip-flop “samples” \(D \) on the rising edge of \(CLK \)
 - When \(CLK \) rises from 0 to 1, \(D \) passes through to \(Q \)
 - Otherwise, \(Q \) holds its previous value
 - \(Q \) changes only on the rising edge of \(CLK \)
- A flip-flop is called an *edge-triggered* device because it is activated on the clock edge
D Flip-Flop Internal Circuit
D Flip-Flop Internal Circuit

- Two back-to-back latches (L1 and L2) controlled by complementary clocks
- When $CLK = 0$
 - L1 is transparent, L2 is opaque
 - D passes through to N1
- When $CLK = 1$
 - L2 is transparent, L1 is opaque
 - N1 passes through to Q
- Thus, on the edge of the clock (when CLK rises from 0 to 1)
 - D passes through to Q
D Flip-Flop vs. D Latch

CLK
D Q
Q

CLK
D Q
Q

Q (latch)

Q (flop)
D Flip-Flop vs. D Latch

CLK

D
 Q
 Q

D
 Q
 Q

CLK

D

Q (latch)

Q (flop)
Latch and Flip-flop (two latches)

A latch can be considered as a door

CLK = 0, door is shut
CLK = 1, door is unlocked

A flip-flop is a two door entrance

CLK = 1
CLK = 0
CLK = 1
D Flip-Flop (Delay)

Characteristic Expression: \(Q(t+1) = D(t) \)

<table>
<thead>
<tr>
<th>Id</th>
<th>D</th>
<th>Q(t)</th>
<th>Q(t+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

State table

\[
\begin{array}{c|cc|c}
PS & D & 0 & 1 \\
\hline
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 \\
\end{array}
\]

NS = Q(t+1)
Can D flip-flop serve as a memory component?
A. Yes
B. No
Rising vs. Falling Edge D Flip-Flop

The triangle means clock input, edge triggered

Symbol for rising-edge triggered D flip-flop

Symbol for falling-edge triggered D flip-flop

Internal design: Just invert servant clock rather than master

rising edges

falling edges
Enabled D-FFs

- **Inputs:** CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored

- **Function**
 - $EN = 1$: D passes through to Q on the clock edge
 - $EN = 0$: the flip-flop retains its previous state
Resettable Flip-Flops

- **Inputs:** $CLK, D, Reset$
- **Function:**
 - $Reset = 1$: Q is forced to 0
 - $Reset = 0$: flip-flop behaves as ordinary D flip-flop
- **Two types:**
 - **Synchronous:** resets at the clock edge only
 - **Asynchronous:** resets immediately when $Reset = 1$
- Asynchronously resettable flip-flop requires changing the internal circuitry of the flip-flop
- Synchronously resettable flip-flop circuit:
- There are also synch/asynch settable FFs

Sources: TSR, Katz, Boriello & Vahid
Bit Storage Overview

SR latch
- S (set)
- R (reset)
- S=1 sets Q to 1, R=1 resets Q to 0.
- Problem: SR=11 yield undefined Q.

Level-sensitive SR latch
- S and R only have effect when C=1.
- We can design outside circuit so SR=11 never happens when C=1.
- Problem: avoiding SR=11 can be a burden.

D latch
- SR can’t be 11 if D is stable before and while C=1, and will be 11 for only a brief glitch even if D changes while C=1.
- *Transition may cross many levels of latches.*

D flip-flop
- Only loads D value present at rising clock edge, so values can’t propagate to other flip-flops during same clock cycle.
- *Transition happens between two level of flip-flops.*
Building blocks with FFs: Basic Register

![Diagram of a basic register using FFs with inputs IN1 to IN4, outputs OUT1 to OUT4, and clock signal CLK. The diagram includes a register symbol labeled reg(4) with outputs Q3 to Q0.]}
Shift register

- Holds & shifts samples of input

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shift register

- Holds & shifts samples of input

<table>
<thead>
<tr>
<th>Time</th>
<th>Input</th>
<th>OUT1</th>
<th>OUT2</th>
<th>OUT3</th>
<th>OUT4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Pattern Recognizer

• Combinational function of input samples
Counters

- Sequences through a fixed set of patterns
Describing Sequential Ckts

- State diagrams and next-state tables are not suitable for describing very large digital designs
 - large circuits must be described in a modular fashion -- as a collection of cooperating FSMs
- BSV is a modern programming language to describe cooperating FSMs
 - We will give various examples of FSMs in BSV
Modulo-4 counter circuit

\[q_{0t+1} = \sim inc \cdot q_{0t} + inc \cdot \sim q_{0t} \]
\[q_{1t+1} = \sim inc \cdot q_{1t} + inc \cdot \sim q_{1t} \cdot q_{0t} + inc \cdot q_{1t} \cdot \sim q_{0t} \]

“Optimized” logic
\[q_{0t+1} = inc \oplus q_{0t} \]
\[q_{1t+1} = (inc == 1) \ ? \ q_{0t} \oplus q_{1t} : q_{1t} \]
Modulo-4 counter circuit

\[q^{t+1}_0 = \neg \text{inc} \cdot q^t_0 + \text{inc} \cdot \neg q^t_0 \]
\[q^{t+1}_1 = \neg \text{inc} \cdot q^t_1 + \text{inc} \cdot \neg q^t_1 \cdot q^t_0 + \text{inc} \cdot q^t_1 \cdot \neg q^t_0 \]

"Optimized" logic
\[q^{t+1}_0 = \text{inc} \oplus q^t_0 \]
\[q^{t+1}_1 = (\text{inc} == 1) \ ? q^t_0 \oplus q^t_1 : q^t_1 \]

<table>
<thead>
<tr>
<th>PS\input</th>
<th>inc=0</th>
<th>inc=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>01</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>00</td>
</tr>
</tbody>
</table>

PS: q^t_1 q^t_0, NS: q^{t+1}_1 q^{t+1}_0
modulo4 counter in BSV

module moduloCounter(Counter);
 Reg#(Bit#(2)) cnt <- mkReg(0);
 method Action inc;
 cnt <=(!cnt[1]&cnt[0] | cnt[1]&!cnt[0],
 !cnt[0]);
 endmethod
 method Bit#(2) read;
 return cnt;
 endmethod
endmodule

An action to specify how the value of the cnt is to be set

State specification

Initial value
Interface

• Modulo counter has the following interface, i.e., type

```plaintext
interface Counter;
  method Action inc;
  method Bit#(2) read;
endinterface
```

• An interface can have many different implementations
 – For example, the numbers may be represented as Gray code
Modules

• A module in BSV is like a class definition in Java or C++
 – It has internal state
 – The internal state can only be read and manipulated by the (interface) methods
 – An action specifies which state elements are to be modified
 – Actions are atomic -- either all the specified state elements are modified or none of them are modified (no partially modified state is visible)
interface Fifo#(numeric type size, type t);
method Bool notFull;
method Bool notEmpty;
method Action enq(t x);
method Action deq;
method t first;
endinterface

- enq should be called only if notFull returns True;
- deq and first should be called only if notEmpty returns True
module mkCFFifo (Fifo#(1, t));
 Reg#(t) d <- mkRegU;
 Reg#(Bool) v <- mkReg(False);
method Bool notFull;
 return !v;
endmethod
method Bool notEmpty;
 return v;
endmethod
method Action enq(t x);
 v <= True; d <= x;
endmethod
method Action deq;
 v <= False;
endmethod
method t first;
 return d;
endmethod
endmodule

One-Element FIFO Implementation

x

en

deq enq

notFull

notEmpty

Fifo module

first

L04-56 CSE 140L W2017
FIFO Module:
methods with guarded interfaces

- Every method has a guard (rdy wire); the value returned by a value method is meaningful only if its guard is true.
- Every action method has an enable signal (en wire); an action method is invoked (en is set to true) only if the guard is true.
- Guards make it possible to transfer the responsibility of the correct use of a method from the user to the compiler.
- Guards are extraordinarily convenient for programming and also enhance modularity of the code.
One-Element FIFO Implementation with guards

module mkCFFifo (Fifo#(1, t));
 Reg#(t) d <- mkRegU;
 Reg#(Bool) v <- mkReg(False);
 method Action enq(t x) if (!v); not full
 v <= True; d <= x;
 endmethod
 method Action deq if (v); not empty
 v <= False;
 endmethod
 method t first if (v); not empty
 return d;
 endmethod
endmodule