CSE 140, Lecture 2
Combinational Logic

CK Cheng
CSE Dept.
UC San Diego
Combinational Logic Outlines

1. Introduction
 • Scope
 • Boolean Algebra (Review)
 • Definition
 • Duality
 • AND/OR Gates
 • Expressions vs Circuits
 • Handy Tools
 • DeMorgan’s Theorem
 • Consensus Theorem
 • Shannon’s Expansion

2. Specification

3. Synthesis
1.1 Combinational Logic: Scope

• Description
 – **Language:** e.g. C Programming, BSV, Verilog, VHDL
 – Boolean algebra
 – Truth table: Powerful engineering tool

• Design
 – Schematic Diagram
 – Inputs, Gates, Nets, Outputs

• Goal
 – Validity: *correctness*, turnaround time
 – Performance: power, timing, *cost*
 – Testability: yield, diagnosis, robustness
Scope: Boolean algebra, switching algebra, logic

- Boolean Algebra: multiple-valued logic, i.e. each variable have multiple values.
- Switching Algebra: binary logic, i.e. each variable can be either 1 or 0.

Boolean Algebra ≠ Switching Algebra
Scope: Switching Algebra (Binary Values)

- Typically consider only two discrete values:
 - 1’s and 0’s
 - 1, TRUE, HIGH
 - 0, FALSE, LOW
- 1 and 0 can be represented by specific voltage levels, rotating gears, fluid levels, etc.
- Digital circuits usually depend on specific voltage levels to represent 1 and 0
- *Bit*: Binary digit
Scope: Levels of Logic

- Multiple Level Logic: Many layers of two level logic with some inverters, e.g. \(((a+bc)^\prime+ab^\prime)+b^\prime c+c^\prime d)^\prime bc+c^\prime e \)
 (A network of two level logic)
- Two Level Logic: Sum of products, or product of sums, e.g. \(ab + a^\prime c + a^\prime b^\prime, (a^\prime+c) (a+b^\prime) (a+b+c^\prime)\)

Features of Digital Logic Design

- Multiple Outputs
- Don’t care sets
1.2 Boolean Algebra (Review)

George Boole, 1815-1864

- Born to working class parents: Son of a shoemaker
- Taught himself mathematics and joined the faculty of Queen’s College in Ireland.
- Wrote *An Investigation of the Laws of Thought* (1854): systematize Aristotle’s logic
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.
Review of Boolean Algebra

Let B be a nonempty set with two 2-input operations, a 1-input operation ` (complement), and two distinct elements 0 and 1. Then B is called a Boolean algebra if the following axioms hold.

• Associative laws: \((a+b)+c=a+(b+c), (a \cdot b) \cdot c=a \cdot (b \cdot c)\)

• Commutative laws: \(a+b=b+a, a \cdot b=b \cdot a\)

• Distributive laws: \(a+(b \cdot c)=(a+b) \cdot (a+c), a \cdot (b+c)=a \cdot b+a \cdot c\)

• Identity laws: \(a+0=a, a \cdot 1=a\)

• Complement laws: \(a+a'=1, a \cdot a'=0\)
Review of Boolean Algebra: Duality

<table>
<thead>
<tr>
<th></th>
<th>Benefits</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefits</td>
<td>- Consistency check</td>
<td>- No graphical representation</td>
</tr>
<tr>
<td>Drawbacks</td>
<td>- Requires manual calculation</td>
<td></td>
</tr>
</tbody>
</table>

Laws of Boolean Algebra

Associative laws

- \((a+b)+c = a+(b+c)\)
- \((a \cdot b) \cdot c = a \cdot (b \cdot c)\)

Commutative laws

- \(a+b = b+a\)
- \(a \cdot b = b \cdot a\)

Distributive laws

- \(a+(b \cdot c) = (a+b) \cdot (a+c)\)
- \(a \cdot (b+c) = a \cdot b + a \cdot c\)

Identity laws

- \(a+0 = a\)
- \(a \cdot 1 = a\)

Complement laws

- \(a+a' = 1\)
- \(a \cdot a' = 0\)

Duality

We swap all operators between \((+,.))\) and interchange all elements between \((0,1)\).

For a theorem if the statement can be proven with the laws of Boolean algebra, then the duality of the statement is also true.
1.3 Switching functions: Operators and Digital Logic Gates

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>Y</th>
<th>AND Y=AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Y</th>
<th>OR Y=A+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
<th>NOT Y=A’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Input 0 dominates Y
- 0 blocks the output
- 1 passes signal A

Input 1 dominates Y
- 0 passes signal A
- 1 blocks the output
1.3 Switching functions: Operators and Digital Logic Gates

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND

\[Y = ABC \]

0 blocks the output

1 passes signal A

For AND, only one row is true (minterm)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

\[Y = A + B + C \]

0 passes signal A

1 blocks the output

For OR, only one row is false (maxterm)
1.3 Switching functions: Example on AND and OR

<table>
<thead>
<tr>
<th>id</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

AND

\[Y = A'B'C\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

OR

\[Y = A' + B' + C\]
Switching Expressions vs Logic Diagrams

Switching expression is related to logic implementation

• Switching Expression: #literals, #operators
• Schematic Diagram: #gates, #nets, #pins
Laws and Logic Diagrams

Associativity Laws

\[(A+B) + C = A + (B+C)\]

\[(AB)C = A(BC)\]
Laws and Logic Diagrams

Identity Laws
\[A \cdot 1 = A \quad A + 1 = 1 \]
\[A \cdot 0 = 0 \quad A + 0 = A \]

Complement Laws
\[A + A' = 1 \quad A \cdot A' = 0 \]

Distributive Laws
\[A \cdot (B+C) = A \cdot B + A \cdot C \]
\[A + B \cdot C = (A+B) \cdot (A+C) \]
Switching Expression and Logic

Schematic Diagram:
5 primary inputs
1 primary output
4 gates (3 ANDs, 1 OR)
9 signal nets
12 pins

Cost: #gates, #nets, #pins

Boolean Algebra:
5 variables
1 expression
4 operators (3 ANDs, 1 OR)
5 literals
Switching Expression and Logic

Schematic Diagram:
- 5 primary inputs
- 4 components (gates)
- 9 signal nets
- 12 pins

a·b + c·d

c
d

e

y = e·(a·b+c·d)

Boolean Algebra:
- 5 literals
- 4 operators

A. #inputs I. #variables
B. #gates II. #operators
C. #nets III. #variables + #operators
D. #pins IV. #literals + 2 #operators - 1
E. None
Example: $f(a,b,c) = ab + a'c + a'b'$
Example: \(f(a,b,c) = (a'+c)(a+b')(a+b+c) \)
1.4 Handy Tools

Boolean Algebra
- DeMorgan’s Law: Complements
- Consensus Theorem

Switching Logic
- Shannon’s Expansion
- Truth Table
- Karnaugh Map (single output, two level logic)
DeMorgan’s Theorem and Digital Logic

T12. DeMorgan’s Theorem \((A+B)' = A'B'\) \((AB)' = A' + B'\)

- \(Y = (AB)' = A' + B'\)

- \(Y = (A + B)' = A'B'\)
DeMorgan’s Theorem: Bubble Pushing

- Pushing bubbles backward (from the output) or forward (from the inputs) changes the body of the gate from AND to OR or vice versa.
- Pushing a bubble from the output back to the inputs puts bubbles on all gate inputs.

![Pushing bubbles backward](image1)

![Pushing bubbles forward](image2)

- Pushing bubbles on all gate inputs forward toward the output puts a bubble on the output and changes the gate body.

![Pushing bubbles on all](image3)
Consensus Theorem

• \(AB + AC + B' C \)
 \[= AB + B' C \]

• \((A+B)(A+C)(B'+C) \)
 \[= (A+B)(B'+C) \]

The consensus of \(AB, B' C \) is: ?

Exercise: to prove the reduction using
(1) Venn Diagrams,
(2) Boolean algebra,
(3) Logic simulation and
(4) Shannon’s expansion
Consensus Theorem: Venn Diagrams

\[AB + AC + B'C : AB + B'C \]
Consensus Theorem: Boolean Algebra

\[AB + AC + B'C = AB + B'C \]

\[(A+B)(A+C)(B'+C) = (A+B)(B'+C) \]

\[AB + AC + B'C = AB + AC1 + B'C = AB + AC(B+B') + B'C = AB + ABC + AB'C + B'C = AB(1+C) + (A+1)B'C = AB + B'C \]

\[(A+B)(A+C)(B'+C) = (A+B)(B'+C) \]
Consensus Theorem: Logic Simulation

\[f(A, B, C) = AB + AC + B'C \]
\[g(A, B, C) = AB + B'C \]

<table>
<thead>
<tr>
<th>Index</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>AB</th>
<th>AC</th>
<th>B’C</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Consensus Theorem (Examples)
iClicker: Which one is not a consensus of the expressions on the right.

A. B
B. BC
C. (B+C)D
D. BCD
E. BCDE

1. A+A’B
2. A+A’BC
3. A(B+C)+A’D
4. ABC+A’D+BCDE
Shannon’s Expansion

• Shannon’s expansion assumes a switching algebra system
• Divide a switching function into smaller functions
• Pick a variable x, partition the switching function into two cases: $x=1$ and $x=0$
 - $f(x,y,z,\ldots) = xf(x=1,y,z,\ldots) + x'f(x=0,y,z,\ldots)$

• For example
 - $f(x) = xf(1) + x'f(0)$
 - $f(x,y) = xf(1,y) + x'f(0,y)$
Shannon’s Expansion (Example)

\[f(a, b, c) = a'b' + bc + ab'c \]

Shannon’s expansion:
\[f(a, b, c) = af(1, b, c) + a'f(0, b, c) \]
Shannon’s Expansion: Example

\[f(x, y, z) = xf(x = 1, y, z) + x'f(x = 0, y, z) \]

\[f(x, y) = (x + f(x = ?, y))(x' + f(x = ?', y)) \]

- A. ?=0
- B. ?=1.
Shannon’s Expansion

- Decompose the switching function into minterms

\[
f(x, y) = xf(1, y) + x'f(0, y)
\]

\[
= x(yf(1,1) + y'f(1,0)) + x'(y(f(0,1) + y'f(0,0))
\]

\[
= xyf(1,1) + xy'f(1,0) + x'yf(0,1) + x'y'f(0,0).
\]

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
<th>f(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>f(0,0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>f(0,1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>f(1,0)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>f(1,1)</td>
</tr>
</tbody>
</table>

Shannon’s expansion can decompose a switching function into a truth table.
Shannon’s Expansion vs Truth Table

Example: \(f(x,y) = x + x'y \)

\[
f(x, y) = xf(1, y) + x'f(0, y)
= x(yf(1,1) + y'f(1,0)) + x'(y(f(0,1) + y'f(0,0))
= xyf(1,1) + xy'f(1,0) + x'yf(0,1) + x'y'f(0,0).
\]

<table>
<thead>
<tr>
<th>id</th>
<th>x</th>
<th>y</th>
<th>f(x,y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>f(0,0)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>f(0,1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>f(1,0)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>f(1,1)</td>
</tr>
</tbody>
</table>

Shannon’s expansion can decompose a switching function into a truth table.
Shannon’s Expansion

• Decompose the switching function into minterms
 \[f(x, y) = xf(1, y) + x'f(0, y) \]
 \[= x(yf(1,1) + y'f(1,0)) + x'(y(f(0,1) + y'f(0,0)) \]
 \[= xyf(1,1) + xy'f(1,0) + x'yf(0,1) + x'y'f(0,0). \]

• Decompose the switching function into maxterms
 \[f(x, y) = (x' + f(1, y)) \cdot (x + f(0, y)) \]
 \[= (x' + (y' + f(1,1)) \cdot (y + f(1,0))) \cdot (x + (y' + f(0,1)) \cdot (y + f(0,0))) \]
 \[= (x' + y' + f(1,1))(x' + y + f(1,0))(x + y' + f(0,1))(x + y + f(0,0)). \]
Shannon’s Expansion: Example

Which variable in $ab' + ac + bc$ can be used for expansion?

A. a
B. b
C. c
D. None of the above
Shannon’s Expansion: Example

\[F(A,B,C) = AB' + AC + BC \]
Remark: The choice of the variable for expansion is a nontrivial question.
Review Summary: Switching Algebra and Karnaugh Map

Shannon’s expansion and consensus theorem are used for logic optimization

- Shannon’s expansion divides the problem into smaller functions
- Consensus theorem finds common terms when we merge small functions
- Karnaugh map mimics the above two operations in two dimensional space as a visual aid.
Part I. Combinational Logic

II) Specification

1. Language
2. Boolean Algebra
 Canonical Expression: Sum of minterms and Product of maxterms
3. Truth Table: minterms and maxterms
4. Incompletely Specified Function
II. Specification (use addition as an example)

Decimal Addition

\[
\begin{array}{c}
5 \\
+ 7 \\
\hline
12
\end{array}
\]

Carry Sum

Binary Addition

\[
\begin{array}{c}
1 \\
+ 1 \\
\hline
1
\end{array}
\]

\[
\begin{array}{c}
1 \\
+ 1 \\
\hline
1
\end{array}
\]

\[
\begin{array}{c}
1 \\
+ 1 \\
\hline
1
\end{array}
\]

\[
\begin{array}{c}
1 \\
+ 1 \\
\hline
1
\end{array}
\]

Carryout Sums

Carry bits

5

7

12
II. Specification (use addition as an example)

Decimal Addition

Binary Addition
II. Specification (use addition as an example)
Binary Addition: Hardware

• Half Adder: Two inputs \((a,b)\) and two outputs \((\text{carry}, \text{sum})\).

• Full Adder: Three inputs \((a,b,c_{\text{in}})\) and two outputs \((\text{carry}, \text{sum})\).
Half Adder

Truth Table

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>carry</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Switching Function

Switching Expressions:

\[
\text{Sum (a, b)} = a' \cdot b + a \cdot b' \\
\text{Carry (a, b)} = a \cdot b
\]

Ex:

\[
\text{Sum (0,0)} = 0' \cdot 0 + 0 \cdot 0' = 0 + 0 = 0 \\
\text{Sum (0,1)} = 0' \cdot 1 + 0 \cdot 1' = 1 + 0 = 1 \\
\text{Sum (1,1)} = 1' \cdot 1 + 1 \cdot 1' = 0 + 0 = 0
\]
function Bit#(2) ha(Bit#(1) a, Bit#(1) b);
 Bit#(1) s = (~a & b) | (a & ~b);
 Bit#(1) c = a & b;
 return {c, s};
endfunction

• {c, s} represents bit concatenation
Full Adder

Arithmetic:
\[2c_{\text{out}} + \text{sum} = a + b + c_{\text{in}}\]

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c_{\text{in}}</th>
<th>c_{\text{out}}</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Minterms

A product of all variables in the function.
A minterm is equal to 1 on exactly one row of the truth table.

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>carry</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>a’b’c</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>a’bc’</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>a’bc</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ab’c’</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ab’c</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>abc’</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>abc</td>
<td>abc</td>
</tr>
</tbody>
</table>
Maxterms

A sum of all variables in the function.
A maxterm is equal to 0 on exactly one row of the truth table.

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>carry</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a+b+c</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>a+b+c’</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>a+b’+c</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a+b’+c’</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>a’+b+c</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>a’+b+c’</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>a’+b’+c</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Minterms and Maxterms

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>minterm</th>
<th>maxterm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$m_0 = a'b'c'$</td>
<td>$M_0 = a + b + c$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$m_1 = a'b'c$</td>
<td>$M_1 = a + b + c'$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$m_2 = a'bc'$</td>
<td>$M_2 = a + b' + c$</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$m_3 = a'bc$</td>
<td>$M_3 = a + b' + c'$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$m_4 = ab'c'$</td>
<td>$M_4 = a' + b + c$</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$m_5 = ab'c$</td>
<td>$M_5 = a' + b + c'$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>$m_6 = abc'$</td>
<td>$M_6 = a' + b' + c$</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$m_7 = abc$</td>
<td>$M_7 = a' + b' + c'$</td>
</tr>
</tbody>
</table>

Minterms cover all the outputs which are true (1). Maxterms cover all the outputs which are false (0).
Minterms

\[f_1(a,b,c) = a'bc + ab'c + abc' + abc \]

- \(a'bc = 1\) iff \((a,b,c,) = (0,1,1)\)
- \(ab'c = 1\) iff \((a,b,c,) = (1,0,1)\)
- \(abc' = 1\) iff \((a,b,c,) = (1,1,0)\)
- \(abc = 1\) iff \((a,b,c,) = (1,1,1)\)

\[f_1(a,b,c) = 1 \text{ iff } (a,b,c) = (0,1,1), (1,0,1), (1,1,0), \text{ or } (1,1,1) \]

Ex:
\[f_1(1,0,1) = 1'01 + 10'1 + 101' + 101 = 1 \]
\[f_1(1,0,0) = 1'00 + 10'0 + 100' + 100 = 0 \]
Maxterms

\[f_2(a,b,c) = (a+b+c)(a+b+c')(a+b'+c)(a'+b+c) \]

\[a + b + c = 0 \text{ iff } (a,b,c) = (0,0,0) \]
\[a + b + c' = 0 \text{ iff } (a,b,c) = (0,0,1) \]
\[a + b' + c = 0 \text{ iff } (a,b,c) = (0,1,0) \]
\[a' + b + c = 0 \text{ iff } (a,b,c) = (1,0,0) \]
\[f_2(a,b,c) = 0 \text{ iff } (a,b,c) = (0,0,0), (0,0,1), (0,1,0), (1,0,0) \]

\[\text{Ex: } f_2(1,0,1) = (1+0+1)(1+0+1')(1+0'+1)(1'+0+1) = 1 \]
\[f_2(0,1,0) = (0+1+0)(0+1+0')(0+1'+0)(0'+1+0) = 0 \]
\[f_1(a,b,c) = a'b + ab'c + abc' + abc \]
\[f_2(a,b,c) = (a+b+c)(a+b'+c)(a'+b+c) \]
\[f_1(a, b, c) = m_3 + m_5 + m_6 + m_7 = \Sigma m(3,5,6,7) \]
\[f_2(a, b, c) = M_0M_1M_2M_4 = \Pi M(0, 1, 2, 4) \]

iClicker: Does \(f_1 = f_2 \)?
A. Yes
B. No.
The coverage of a single minterm. e.g. $m_4 = ab'c'$

<table>
<thead>
<tr>
<th>Id</th>
<th>a</th>
<th>b</th>
<th>c_in</th>
<th>carry</th>
<th>minterm</th>
<th>4 = ab’c’</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Only one row has a 1.
The coverage of a single maxterm. E.g. $M_4 = a' + b + c$

<table>
<thead>
<tr>
<th>Id</th>
<th>a</th>
<th>b</th>
<th>c in</th>
<th>carry</th>
<th>maxterm 4 = a+b+c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Only one row has a 0.
Minterms and Maxterms: Summary

\[f_1(a,b,c) = a'bc + ab'c + abc' + abc \]
\[f_2(a,b,c) = (a+b+c)(a+b+c')(a+b'+c)(a'+b+c) \]

Canonical presentation of logic functions
Conversion between truth tables and switching functions
Incompletely Specified Function

Don’t care set is important because it allows us to minimize the function

<table>
<thead>
<tr>
<th>Id</th>
<th>a</th>
<th>b</th>
<th>f (a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1) The input does not happen.
2) The input happens, but the output is ignored.

Examples:
- Decimal number 0… 9 uses 4 bits. (1,1,1,1) does not happen.
- Final carry out bit (output is ignored).
Incompletely Specified Function

<table>
<thead>
<tr>
<th>id</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[g_1(a,b,c) = a'b'c + a'bc + ab'c' + abc \]
\[= m_1 + m_3 + m_4 + m_7 \]
\[= \sum m(1,3,4,7) \]

\[g_2(a,b,c) = (a+b+c)(a'+b'+c) \]
\[= M_0M_6 \]
\[= \prod M(0,6) \]
Incompletely Specified Function

\[g_1(a, b, c) = \sum m(1, 3, 4, 7) \]
\[g_2(a, b, c) = \prod M(0, 6) \]

iClicker: Does \(g_1(a, b, c) = g_2(a, b, c) \)?
A: Yes
B: No