CSE 140 Lecture 11
Standard Combinational Modules

CK Cheng
CSE Dept.
UC San Diego
Part III - Standard Combinational Modules

- Introduction
- Decoder
 - Behavior, Logic, Usage
- Encoder
- Multiplexer (Mux)
 - Behavior, Logic, Usage
- Demultiplexer (DeMux)
Part III - Standard Combinational Modules

Signal Transport
- Decoder: Decode address
- Encoder: Encode address
- Multiplexer (Mux): Select data by address
- Demultiplexer (DeMux): Direct data by address
- Shifter: Shift bit location

Data Operator
- Adder: Add two binary numbers
- Multiplier: Multiply two binary numbers
Interconnect: Decoder, Encoder, Mux, DeMux

Decoder: Decode the address to assert the addressed device
Mux: Select the inputs according to the index addressed by the control signals
1. Decoder

- Definition
- Logic Diagram
- Application (Universal Set)
- Tree of Decoders
iClicker: Decoder Definition

A. A device that decodes
B. An electronic device that converts signals from one form to another
C. A machine that converts a coded text into ordinary language
D. A device or program that translates encoded data into its original format
E. All of the above
Decoder Definition: A digital module that converts a binary address to the assertion of the addressed device

\[y_i = 1 \text{ if } E = 1 \land (I_2, I_1, I_0) = i \]
\[y_i = 0 \text{ otherwise} \]
1. Decoder: Definition

- N inputs, 2^N outputs
- One-hot outputs: only one output HIGH at most

\[
\begin{array}{c|c|c|c|c|}
A_1 & A_0 & Y_3 & Y_2 & Y_1 & Y_0 \\
\hline
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]
1. Decoder: Definition

iClicker: A 3-input decoder has how many outputs?
A. 2 outputs
B. 4 outputs
C. 8 outputs
D. 10 outputs
Decoder Definition

iClicker: For a 3-input decoder, suppose \((E,I_2,I_1,I_0) = (1,0,0,0) \), then \((y_7,y_6, \ldots, y_0) \) is equal to:

A. \((00000000) \)
B. \((00000001) \)
C. \((00000010) \)
D. \((01000000) \)
E. \((10000000) \)
Decoder: Logic Diagram (Inside a decoder)

\[y_0 = 1 \text{ if } (A_1, A_0) = (0,0) \& En = 1 \]

\[y_i = m_i En \]

2:4 Decoder

\[
\begin{array}{c|c|c|c|c|c}
A_1 & A_0 & Y_3 & Y_2 & Y_1 & Y_0 \\
\hline
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[y_3 = A_1 A_0 En \]
1. Decoder: Definition

PI Q: What is the output $Y_{3:0}$ of the 2:4 decoder for $(A_1, A_0) = (1,0)$?

A. (1, 1, 0, 0)
B. (1, 0, 1, 1)
C. (0, 0, 1, 0)
D. (0, 1, 0, 0)
Decoder Application: universal set \{\text{Decoder, OR}\}

Example:
Implement the following functions with a 3-input decoder and OR gates.

i) \quad f_1(a,b,c) = \Sigma m(1,2,4)

ii) \quad f_2(a,b,c) = \Sigma m(2,3),

iii) \quad f_3(a,b,c) = \Sigma m(0,5,6)
Decoder Application: universal set \{\text{Decoder, OR}\}

Decoder produces minterms when $E=1$. We can use an OR gate to collect the minterms to cover the On-set. For the Don’t Care-Set, we can just ignore the terms.
Example: Implement functions
i) \(f_1(a,b,c) = \Sigma m(1,2,4) + \Sigma d(0,5) \),
ii) \(f_2(a,b,c) = \Sigma m(2,3) + \Sigma d(1,4) \),
iii) \(f_3(a,b,c) = \Sigma m(0,5,6) \)

with a 3-input decoder and OR gates.
Decoders

• OR minterms

\[
Y = AB + \overline{AB} = A \oplus B
\]
Tree of Decoders: Scale up the size of the decoders using a tree structure

Implement a $4-2^4$ decoder with $3-2^3$ decoders.
Tree of Decoders

Implement a $6-2^6$ decoder with $3-2^3$ decoders.
PI Q: A four variable switching function \(f(a,b,c,d) \) can be implemented using which of the following?

A. 1:2 decoders and OR gates
B. 2:4 decoders and OR gates
C. 3:8 decoders and OR gates
D. All of the above
E. None of the above
2. Encoder

- Definition
- Logic Diagram
- Priority Encoder
iClicker: Definition of Encoder

A. Any program, circuit or algorithm which encodes
B. In digital audio technology, an encoder is a program that converts an audio WAV file into an MP3 file
C. A device that convert a message from plain text into code
D. A circuit that is used to convert between digital video and analog video
E. All of the above
Encoder Definition: A digital module that converts the assertion of a device to the binary address of the device.

At most one $I_i = 1$.

$(y_{n-1}, \ldots, y_0) = i$ if $I_i = 1$ & $E = 1$

$(y_{n-1}, \ldots, y_0) = 0$ otherwise.

$A = 1$ if $E = 1$ and one i s.t. $I_i = 1$

$A = 0$ otherwise.
Encoder: Logic Diagram

I_1
I_3
I_5
I_7

I_2
I_3
I_6
I_7

I_4
I_5
I_6
I_7

I_0
I_1
...
I_6
I_7

y_0
y_1
y_2
A
Priority Encoder:

```
I_0  I_3
0    1
y_0  y_1
Eo   Gs
```
Priority Encoder: Definition

Description: Input (I_{2^{n-1}}, \ldots, I_0), Output (y_{n-1}, \ldots, y_0)

(y_{n-1}, \ldots, y_0) = i \text{ if } I_i = 1 \& E = 1 \& I_k = 0
for all k > i (high bit priority) or
for all k < i (low bit priority).

E_0 = 1 \text{ if } E = 1 \& I_i = 0 \text{ for all } i,
G_s = 1 \text{ if } E = 1 \& \exists i \text{ s.t. } I_i = 1.

(G_s \text{ is like A, and } E_0 \text{ passes on enable}).
Priority Encoder: Implement a 32-input priority encoder w/ 8 input priority encoders (high bit priority).